Magmatic History and Crustal Genesis of South America: Constraints from U-Pb Ages and Hf Isotopes of Detrital Zircons in Modern Rivers

Persistent Link:
http://hdl.handle.net/10150/347220
Title:
Magmatic History and Crustal Genesis of South America: Constraints from U-Pb Ages and Hf Isotopes of Detrital Zircons in Modern Rivers
Author:
Pepper, Martin Bailey
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
South America provides an outstanding laboratory for studies of magmatism and crustal evolution because it contains older Archean-Paleoproterozoic cratons that amalgamated during Mesoproterozoic and Neoproterozoic supercontinent assembly, as well as a long history of Andean magmatism that records crustal growth and reworking in an accretionary orogen. We have attempted to reconstruct the growth and evolution of South America through U-Pb geochronology and Hf isotope analyses of detrital zircons from 59 samples of sand from modern rivers and shorelines. Results from 5,524 new U-Pb ages and 1,199 new Hf isotope determinations are reported. We have also integrated our data into a compilation of all previously published zircon geochronologic and Hf isotopic information, yielding a record that includes>42,000 ages and>1,600 Hf isotope analyses. These data yield five main conclusions: (1) South America has an age distribution that is similar to most other continents, presumably reflecting the supercontinent cycle, with maxima at 2.2-1.8 Ga, 1.6-0.9 Ga, 700-400 Ma, and 360-200 Ma; (2)<200 Ma magmatism along the western margin of South America has age maxima at 183 Ma (191-175 Ma), 151 Ma (159-143 Ma), 126 Ma (131-121 Ma), 109 Ma (114-105 Ma), 87 Ma (95-79 Ma), 62 Ma (71-53 Ma), 39 Ma (43-35 Ma), 19 Ma (23-15 Ma), and 6 Ma (10-2 Ma); (3) for the past 200 Ma, there appears to be a positive correlation between magmatism and the velocity of convergence between central South America and Pacific oceanic plates; (4) Hf isotopes record reworking of older crustal materials during most time periods, with incorporation of juvenile crustal materials at ~1.6-1.0 Ga, 500-400 Ma and ~200-100 Ma; and (5) the Hf isotopic signature of<200 Ma magmatism is apparently controlled by the generation of juvenile magmas during extensional tectonism and reworking of juvenile versus evolved crustal materials during crustal thickening and arc migration.
Type:
text; Electronic Dissertation
Keywords:
Geochronology; Hafnium; Structural geology; U-Pb; Zircon; Geosciences; Geochemistry
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Geosciences
Degree Grantor:
University of Arizona
Advisor:
Gehrels, George E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleMagmatic History and Crustal Genesis of South America: Constraints from U-Pb Ages and Hf Isotopes of Detrital Zircons in Modern Riversen_US
dc.creatorPepper, Martin Baileyen_US
dc.contributor.authorPepper, Martin Baileyen_US
dc.date.issued2014en
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractSouth America provides an outstanding laboratory for studies of magmatism and crustal evolution because it contains older Archean-Paleoproterozoic cratons that amalgamated during Mesoproterozoic and Neoproterozoic supercontinent assembly, as well as a long history of Andean magmatism that records crustal growth and reworking in an accretionary orogen. We have attempted to reconstruct the growth and evolution of South America through U-Pb geochronology and Hf isotope analyses of detrital zircons from 59 samples of sand from modern rivers and shorelines. Results from 5,524 new U-Pb ages and 1,199 new Hf isotope determinations are reported. We have also integrated our data into a compilation of all previously published zircon geochronologic and Hf isotopic information, yielding a record that includes>42,000 ages and>1,600 Hf isotope analyses. These data yield five main conclusions: (1) South America has an age distribution that is similar to most other continents, presumably reflecting the supercontinent cycle, with maxima at 2.2-1.8 Ga, 1.6-0.9 Ga, 700-400 Ma, and 360-200 Ma; (2)<200 Ma magmatism along the western margin of South America has age maxima at 183 Ma (191-175 Ma), 151 Ma (159-143 Ma), 126 Ma (131-121 Ma), 109 Ma (114-105 Ma), 87 Ma (95-79 Ma), 62 Ma (71-53 Ma), 39 Ma (43-35 Ma), 19 Ma (23-15 Ma), and 6 Ma (10-2 Ma); (3) for the past 200 Ma, there appears to be a positive correlation between magmatism and the velocity of convergence between central South America and Pacific oceanic plates; (4) Hf isotopes record reworking of older crustal materials during most time periods, with incorporation of juvenile crustal materials at ~1.6-1.0 Ga, 500-400 Ma and ~200-100 Ma; and (5) the Hf isotopic signature of<200 Ma magmatism is apparently controlled by the generation of juvenile magmas during extensional tectonism and reworking of juvenile versus evolved crustal materials during crustal thickening and arc migration.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectGeochronologyen_US
dc.subjectHafniumen_US
dc.subjectStructural geologyen_US
dc.subjectU-Pben_US
dc.subjectZirconen_US
dc.subjectGeosciencesen_US
dc.subjectGeochemistryen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineGeosciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGehrels, George E.en_US
dc.contributor.committeememberReiners, Peteren_US
dc.contributor.committeememberKapp, Paulen_US
dc.contributor.committeememberZandt, Georgeen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.