Persistent Link:
http://hdl.handle.net/10150/347115
Title:
Polarimetric Road Ice Detection
Author:
Drummond, Krista
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Ever since automobiles became affordable for the average American, with the introduction of the Ford Model T in 1908, making driving safer has been a priority. While driver intoxication and distraction are the leading causes of automotive fatalities, poor road conditions increase the frequency and deadliness of these incidents. Monitoring road conditions for thousands of miles of road is a huge undertaking, one too large for human surveillance. Automated systems capable of detecting and reacting to dangerous road conditions would be life-saving. These systems could be mounted to the sides of road and notify an operator of conditions in real-time. Drivers could be warned, action taken, and many lives saved. This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Simulated road samples were measured under many wavelengths and angles, which gave us a larger data library from which to observe trends. Specular and off-specular reflection responses of each sample were also collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance. Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment. Not only is polarimetric ice detection an exciting and novel use of polarization, it has the potential to improve road safety through real-time ice response measures.
Type:
text; Electronic Thesis
Keywords:
Ice; Mueller; Polarimetric; Polarimetry; Polarization; Optical Sciences; Depolarization
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Chipman, Russell A.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePolarimetric Road Ice Detectionen_US
dc.creatorDrummond, Kristaen_US
dc.contributor.authorDrummond, Kristaen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractEver since automobiles became affordable for the average American, with the introduction of the Ford Model T in 1908, making driving safer has been a priority. While driver intoxication and distraction are the leading causes of automotive fatalities, poor road conditions increase the frequency and deadliness of these incidents. Monitoring road conditions for thousands of miles of road is a huge undertaking, one too large for human surveillance. Automated systems capable of detecting and reacting to dangerous road conditions would be life-saving. These systems could be mounted to the sides of road and notify an operator of conditions in real-time. Drivers could be warned, action taken, and many lives saved. This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Simulated road samples were measured under many wavelengths and angles, which gave us a larger data library from which to observe trends. Specular and off-specular reflection responses of each sample were also collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance. Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment. Not only is polarimetric ice detection an exciting and novel use of polarization, it has the potential to improve road safety through real-time ice response measures.en_US
dc.typetexten
dc.typeElectronic Thesisen
dc.subjectIceen_US
dc.subjectMuelleren_US
dc.subjectPolarimetricen_US
dc.subjectPolarimetryen_US
dc.subjectPolarizationen_US
dc.subjectOptical Sciencesen_US
dc.subjectDepolarizationen_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorChipman, Russell A.en_US
dc.contributor.committeememberChipman, Russell A.en_US
dc.contributor.committeememberMilster, Thomasen_US
dc.contributor.committeememberSchwiegerling, Jamesen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.