Persistent Link:
http://hdl.handle.net/10150/338971
Title:
Atmospheric Circulation of Hot Jupiters and Super Earths
Author:
Kataria, Tiffany
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation explores the atmospheric circulation of extrasolar planets ranging from hot Jupiters to super Earths. For each of these studies, I utilize a three-dimensional circulation model coupled to a state-of-the-art, plane-parallel, two-stream, non-grey radiative transfer model dubbed the SPARC/MITgcm. First, I present models of the atmospheric circulation of eccentric hot Jupiters, a population which undergoes large variations in flux throughout their orbits. I demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits. For a select number of model integrations, I generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what is seen in infrared (IR) lightcurves. Next, I present circulation models of WASP-43b, a transiting hot Jupiter that is joining the ranks of HD 189733b and HD 209458b as a 'benchmark' hot Jupiter, with a wide array of observational constraints from the ground and space. Here I utilize the robust dataset of spectrophotometric observations taken with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) to interpret my model results. I find that an atmospheric composition of 5x solar provides the best match to the data, particularly in emission. Lastly, I present atmospheric simulations of the super Earth GJ 1214b, exploring the planet's circulation as a function of atmospheric metallicity and composition. I find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity leads to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger day-night and equator-to-pole temperature variations than low mean-molecular weight atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. By comparing emergent flux spectra and lightcurves for 50x solar and water-dominated compositions, I show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. In sum, these three studies explore exoplanet atmospheric circulation as a function of mass, radius, gravity, rotation rate, eccentricity and orbital distance.
Type:
text; Electronic Dissertation
Keywords:
hot Jupiters; planetary science; super Earths; exoplanets; Planetary Sciences
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Planetary Sciences
Degree Grantor:
University of Arizona
Advisor:
Showman, Adam P.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAtmospheric Circulation of Hot Jupiters and Super Earthsen_US
dc.creatorKataria, Tiffanyen_US
dc.contributor.authorKataria, Tiffanyen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation explores the atmospheric circulation of extrasolar planets ranging from hot Jupiters to super Earths. For each of these studies, I utilize a three-dimensional circulation model coupled to a state-of-the-art, plane-parallel, two-stream, non-grey radiative transfer model dubbed the SPARC/MITgcm. First, I present models of the atmospheric circulation of eccentric hot Jupiters, a population which undergoes large variations in flux throughout their orbits. I demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits. For a select number of model integrations, I generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what is seen in infrared (IR) lightcurves. Next, I present circulation models of WASP-43b, a transiting hot Jupiter that is joining the ranks of HD 189733b and HD 209458b as a 'benchmark' hot Jupiter, with a wide array of observational constraints from the ground and space. Here I utilize the robust dataset of spectrophotometric observations taken with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) to interpret my model results. I find that an atmospheric composition of 5x solar provides the best match to the data, particularly in emission. Lastly, I present atmospheric simulations of the super Earth GJ 1214b, exploring the planet's circulation as a function of atmospheric metallicity and composition. I find that atmospheres with a low mean-molecular weight have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity leads to shallower atmospheric heating, larger day-night temperature variations and hence stronger superrotation. In comparison, atmospheres with a high mean-molecular weight have larger day-night and equator-to-pole temperature variations than low mean-molecular weight atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. By comparing emergent flux spectra and lightcurves for 50x solar and water-dominated compositions, I show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. In sum, these three studies explore exoplanet atmospheric circulation as a function of mass, radius, gravity, rotation rate, eccentricity and orbital distance.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjecthot Jupitersen_US
dc.subjectplanetary scienceen_US
dc.subjectsuper Earthsen_US
dc.subjectexoplanetsen_US
dc.subjectPlanetary Sciencesen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorShowman, Adam P.en_US
dc.contributor.committeememberShowman, Adam P.en_US
dc.contributor.committeememberApai, Danielen_US
dc.contributor.committeememberBarman, Travisen_US
dc.contributor.committeememberGriffith, Caitlin A.en_US
dc.contributor.committeememberYelle, Roger V.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.