Persistent Link:
http://hdl.handle.net/10150/338965
Title:
Voltammetric Measurements Of Tonic And Phasic Neurotransmission
Author:
Atcherley, Christopher Wade
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
To understand how the brain functions and what disruptions underlie neurological diseases and disorders, analytical methods are needed that can succeed in the complexity of the native brain environment. To make a measurement in functioning, live tissue, these methods must be selective for specific analytes in a matrix that has over 1000 different chemical species, be able to measure chemical changes on multiple timescales (10-3 s to 104 s), have a high spatial resolution (μm), and be sensitive (pM to μM). The work described within, details the development and application of a voltammetric method, fast-scan controlled adsorption voltammetry (FSCAV) that is capable of monitoring baseline levels of serotonin and dopamine, as well as monitoring changes on multiple time scales with high sensitivity and selectivity. Because FSCAV is performed using a carbon-fiber microelectrode, the same sensor can be used for fast-scan cyclic voltammetry to monitor rapid (phasic) changes of dopamine and serotonin in the extracellular space. Thus a single-sensor strategy for measuring tonic and phasic concentrations of these important neurotransmitters is developed and used to elucidate important insight into the differences of serotonin and dopamine regulation. Additionally it is revealed that dopamine exhibits a coaction between tonic and phasic signaling where serotonin does not. Using this approach, a method for evaluating pain processing in a preclinical model is developed, which reveals an important relationship between chronic pain and dopamine signaling. Furthermore, a mathematical model to describe mass-transport limited adsorption is developed and used to determine the diffusion coefficient of both dopamine and serotonin in situ. The work described within details an important advancement in neuroanalytical methodology that will provide new insights both short-term and long-term for studying fundamental chemical mechanisms of neurotransmission.
Type:
text; Electronic Dissertation
Keywords:
FSCAV; FSCV; microelectrode; Serotonin; Voltammetry; Dopamine; Chemistry
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Heien, Michael L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleVoltammetric Measurements Of Tonic And Phasic Neurotransmissionen_US
dc.creatorAtcherley, Christopher Wadeen_US
dc.contributor.authorAtcherley, Christopher Wadeen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTo understand how the brain functions and what disruptions underlie neurological diseases and disorders, analytical methods are needed that can succeed in the complexity of the native brain environment. To make a measurement in functioning, live tissue, these methods must be selective for specific analytes in a matrix that has over 1000 different chemical species, be able to measure chemical changes on multiple timescales (10-3 s to 104 s), have a high spatial resolution (μm), and be sensitive (pM to μM). The work described within, details the development and application of a voltammetric method, fast-scan controlled adsorption voltammetry (FSCAV) that is capable of monitoring baseline levels of serotonin and dopamine, as well as monitoring changes on multiple time scales with high sensitivity and selectivity. Because FSCAV is performed using a carbon-fiber microelectrode, the same sensor can be used for fast-scan cyclic voltammetry to monitor rapid (phasic) changes of dopamine and serotonin in the extracellular space. Thus a single-sensor strategy for measuring tonic and phasic concentrations of these important neurotransmitters is developed and used to elucidate important insight into the differences of serotonin and dopamine regulation. Additionally it is revealed that dopamine exhibits a coaction between tonic and phasic signaling where serotonin does not. Using this approach, a method for evaluating pain processing in a preclinical model is developed, which reveals an important relationship between chronic pain and dopamine signaling. Furthermore, a mathematical model to describe mass-transport limited adsorption is developed and used to determine the diffusion coefficient of both dopamine and serotonin in situ. The work described within details an important advancement in neuroanalytical methodology that will provide new insights both short-term and long-term for studying fundamental chemical mechanisms of neurotransmission.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectFSCAVen_US
dc.subjectFSCVen_US
dc.subjectmicroelectrodeen_US
dc.subjectSerotoninen_US
dc.subjectVoltammetryen_US
dc.subjectDopamineen_US
dc.subjectChemistryen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHeien, Michael L.en_US
dc.contributor.committeememberHeien, Michael L.en_US
dc.contributor.committeememberPemberton, Jeanne E.en_US
dc.contributor.committeememberCowen, Stephen L.en_US
dc.contributor.committeememberArmstrong, Neil R.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.