Perennial Plant Models to Study Species Coexistence in a Variable Environment

Persistent Link:
http://hdl.handle.net/10150/338881
Title:
Perennial Plant Models to Study Species Coexistence in a Variable Environment
Author:
Yuan, Chi
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Living organisms face a changing physical environment. A major challenge in ecology is understanding the ecological and evolutionary role that this changing physical environment has in shaping a community. One fundamental question is how environmental variation affects species coexistence. Modern understanding of environmental variation emphasized the hypothesis that possible adaptations to a fluctuating environment allow species to use different environments in different ways. Species can partition temporally their use of resources. Persistent stages in the life cycle such as prolonged longevity can buffer species through unfavorable environments. Differences in longevity will also lead to different nonlinear responses of population growth rate to fluctuating in resources. Questions arise: how do these possible adaptations to environmental fluctuations affect coexistence. Do they act through multiple coexistence mechanisms, how strong are the mechanisms, and do the mechanisms interact? A framework has been developed for quantifying coexistence mechanisms in models. Being able to quantify coexistence mechanisms in the field is critical to understand different processes contributing to species coexistence in a community: whether a process prevents species dropping out of the community (stable coexistence), or slows down species losses (unstable coexistence), or both. In many respects, applications of those techniques for quantifying coexistence mechanisms have the potential for substantial improvements. In particular, very few studies directly quantify coexistence mechanisms for perennial plants. Coexistence of plant is often puzzling because they share similar resources. Environmental variation has been suggested as an important factor for niche partitioning but challenges for studying it in perennial plants are unclear. The long generation time poses challenges to controlled experiments. Moreover, perennial plants have complex life histories. Vital rates change with size. In addition, tremendous temporal variation is observed in various life history processes. Seedling recruitment and individual growth can both be highly sensitive to fluctuation in the physical environment. Furthermore, different processes in different stages of the life history can interact with environment and competition in different ways. Using perennial plants as a specific system, our study reveals a crucial role in theory development to summarize understanding of such a complex system. I start with the simplest model for perennial plants, the lottery model, to study the relative importance of two coexistence mechanisms: the storage effect and the relative nonlinearity. Then I extend the model by showing that variation in individual growth can also lead to stable coexistence similar to the effect of variation in seedling recruitment. Species can benefit most from variable environments when the processes contributing most to capturing resources on average are also very sensitive to environmental fluctuations. New mechanisms arise through shifts in size structure, which depend on how vital rates change through ontogeny.
Type:
text; Electronic Dissertation
Keywords:
Ecology & Evolutionary Biology
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Ecology & Evolutionary Biology
Degree Grantor:
University of Arizona
Advisor:
Chesson, Peter

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePerennial Plant Models to Study Species Coexistence in a Variable Environmenten_US
dc.creatorYuan, Chien_US
dc.contributor.authorYuan, Chien_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractLiving organisms face a changing physical environment. A major challenge in ecology is understanding the ecological and evolutionary role that this changing physical environment has in shaping a community. One fundamental question is how environmental variation affects species coexistence. Modern understanding of environmental variation emphasized the hypothesis that possible adaptations to a fluctuating environment allow species to use different environments in different ways. Species can partition temporally their use of resources. Persistent stages in the life cycle such as prolonged longevity can buffer species through unfavorable environments. Differences in longevity will also lead to different nonlinear responses of population growth rate to fluctuating in resources. Questions arise: how do these possible adaptations to environmental fluctuations affect coexistence. Do they act through multiple coexistence mechanisms, how strong are the mechanisms, and do the mechanisms interact? A framework has been developed for quantifying coexistence mechanisms in models. Being able to quantify coexistence mechanisms in the field is critical to understand different processes contributing to species coexistence in a community: whether a process prevents species dropping out of the community (stable coexistence), or slows down species losses (unstable coexistence), or both. In many respects, applications of those techniques for quantifying coexistence mechanisms have the potential for substantial improvements. In particular, very few studies directly quantify coexistence mechanisms for perennial plants. Coexistence of plant is often puzzling because they share similar resources. Environmental variation has been suggested as an important factor for niche partitioning but challenges for studying it in perennial plants are unclear. The long generation time poses challenges to controlled experiments. Moreover, perennial plants have complex life histories. Vital rates change with size. In addition, tremendous temporal variation is observed in various life history processes. Seedling recruitment and individual growth can both be highly sensitive to fluctuation in the physical environment. Furthermore, different processes in different stages of the life history can interact with environment and competition in different ways. Using perennial plants as a specific system, our study reveals a crucial role in theory development to summarize understanding of such a complex system. I start with the simplest model for perennial plants, the lottery model, to study the relative importance of two coexistence mechanisms: the storage effect and the relative nonlinearity. Then I extend the model by showing that variation in individual growth can also lead to stable coexistence similar to the effect of variation in seedling recruitment. Species can benefit most from variable environments when the processes contributing most to capturing resources on average are also very sensitive to environmental fluctuations. New mechanisms arise through shifts in size structure, which depend on how vital rates change through ontogeny.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectEcology & Evolutionary Biologyen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineEcology & Evolutionary Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorChesson, Peteren_US
dc.contributor.committeememberChesson, Peteren_US
dc.contributor.committeememberBronstein, Judith L.en_US
dc.contributor.committeememberRosenzweig, Michael L.en_US
dc.contributor.committeememberVenable, D. Lawrenceen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.