Persistent Link:
http://hdl.handle.net/10150/338698
Title:
ROx3: Retinal Oximetry Utilizing the Blue-Green Oximetry Method
Author:
Parsons, Jennifer Kathleen Hendryx
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The ROx is a retinal oximeter under development with the purpose of non-invasively and accurately measuring oxygen saturation (SO₂) in vivo. It is novel in that it utilizes the blue-green oximetry technique with on-axis illumination. ROx calibration tests were performed by inducing hypoxia in live anesthetized swine and comparing ROx measurements to SO₂ values measured by a CO-Oximeter. Calibration was not achieved to the precision required for clinical use, but limiting factors were identified and improved. The ROx was used in a set of sepsis experiments on live pigs with the intention of tracking retinal SO₂ during the development of sepsis. Though conclusions are qualitative due to insufficient calibration of the device, retinal venous SO₂ is shown to trend generally with central venous SO₂ as sepsis develops. The novel sepsis model developed in these experiments is also described. The method of cecal ligation and perforation with additional soiling of the abdomen consistently produced controllable severe sepsis/septic shock in a matter of hours. In addition, the ROx was used to collect retinal images from a healthy human volunteer. These experiments served as a bench test for several of the additions/modifications made to the ROx. This set of experiments specifically served to illuminate problems with various light paths and image acquisition. The analysis procedure for the ROx is under development, particularly automating the process for consistency, accuracy, and time efficiency. The current stage of automation is explained, including data acquisition processes and the automated vessel fit routine. Suggestions for the next generation of device minimization are also described.
Type:
text; Electronic Dissertation
Keywords:
oxygen saturation; retinal imaging; retinal oximeter; sepsis; vessel profile analysis; oximetry; Optical Sciences
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Chipman, Russell A.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleROx3: Retinal Oximetry Utilizing the Blue-Green Oximetry Methoden_US
dc.creatorParsons, Jennifer Kathleen Hendryxen_US
dc.contributor.authorParsons, Jennifer Kathleen Hendryxen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe ROx is a retinal oximeter under development with the purpose of non-invasively and accurately measuring oxygen saturation (SO₂) in vivo. It is novel in that it utilizes the blue-green oximetry technique with on-axis illumination. ROx calibration tests were performed by inducing hypoxia in live anesthetized swine and comparing ROx measurements to SO₂ values measured by a CO-Oximeter. Calibration was not achieved to the precision required for clinical use, but limiting factors were identified and improved. The ROx was used in a set of sepsis experiments on live pigs with the intention of tracking retinal SO₂ during the development of sepsis. Though conclusions are qualitative due to insufficient calibration of the device, retinal venous SO₂ is shown to trend generally with central venous SO₂ as sepsis develops. The novel sepsis model developed in these experiments is also described. The method of cecal ligation and perforation with additional soiling of the abdomen consistently produced controllable severe sepsis/septic shock in a matter of hours. In addition, the ROx was used to collect retinal images from a healthy human volunteer. These experiments served as a bench test for several of the additions/modifications made to the ROx. This set of experiments specifically served to illuminate problems with various light paths and image acquisition. The analysis procedure for the ROx is under development, particularly automating the process for consistency, accuracy, and time efficiency. The current stage of automation is explained, including data acquisition processes and the automated vessel fit routine. Suggestions for the next generation of device minimization are also described.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectoxygen saturationen_US
dc.subjectretinal imagingen_US
dc.subjectretinal oximeteren_US
dc.subjectsepsisen_US
dc.subjectvessel profile analysisen_US
dc.subjectoximetryen_US
dc.subjectOptical Sciencesen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorChipman, Russell A.en_US
dc.contributor.committeememberChipman, Russell A.en_US
dc.contributor.committeememberDenninghoff, Kurt R.en_US
dc.contributor.committeememberGmitro, Arthur F.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.