System-Level Observation Framework for Non-Intrusive Runtime Monitoring of Embedded Systems

Persistent Link:
http://hdl.handle.net/10150/338687
Title:
System-Level Observation Framework for Non-Intrusive Runtime Monitoring of Embedded Systems
Author:
Lee, Jong Chul
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
As system complexity continues to increase, the integration of software and hardware subsystems within system-on-a-chip (SOC) presents significant challenges in post-silicon validation, testing, and in-situ debugging across hardware and software layers. The deep integration of software and hardware components within SOCs often prevents the use of traditional analysis methods to observe and monitor the internal state of these components. This situation is further exacerbated for in-situ debugging and testing in which physical access to traditional debug and trace interfaces is unavailable, infeasible, or cost prohibitive. In this dissertation, we present a system-level observation framework (SOF) that provides minimally intrusive methods for dynamically monitoring and analyzing deeply integrated hardware and software components within embedded systems. The SOF monitors hardware and software events by inserting additional logic within hardware cores and by listening to processor trace ports. The SOF provides visibility for monitoring complex execution behavior of software applications without affecting the system execution. The SOF utilizes a dedicated event-streaming interface that allows efficient observation and analysis of rapidly occurring events at runtime. The event-streaming interface supports three alternatives: (1) an in-order priority-based event stream controller, (2) a round-robin priority-based event stream controller, and (3) a priority-level based event stream controller. The in-order priority-based event stream controller, which uses efficient pipelined hardware architecture, ensures that events are reported in-order based on the time of the event occurrence. While the in-order priority-based event stream controller provides high throughput for reporting events, significant area requirement can be incurred. The round-robin priority-based event stream controller is an area-efficient event stream ordering technique with acceptable tradeoffs in event stream throughput. To further reduce area requirement, the SOF supports a priority-level based event stream controller that provides an in-ordering method with smaller area requirements than the round-robin priority-based event stream controller. Comprehensive experimental results using a complete prototype system implementation are presented to quantify the tradeoffs in area, throughput, and latency for the various event streaming interfaces considering several execution scenarios.
Type:
text; Electronic Dissertation
Keywords:
runtime testing; system observability; verification; in-situ system monitoring; Electrical & Computer Engineering
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Electrical & Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Lysecky, Roman

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSystem-Level Observation Framework for Non-Intrusive Runtime Monitoring of Embedded Systemsen_US
dc.creatorLee, Jong Chulen_US
dc.contributor.authorLee, Jong Chulen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAs system complexity continues to increase, the integration of software and hardware subsystems within system-on-a-chip (SOC) presents significant challenges in post-silicon validation, testing, and in-situ debugging across hardware and software layers. The deep integration of software and hardware components within SOCs often prevents the use of traditional analysis methods to observe and monitor the internal state of these components. This situation is further exacerbated for in-situ debugging and testing in which physical access to traditional debug and trace interfaces is unavailable, infeasible, or cost prohibitive. In this dissertation, we present a system-level observation framework (SOF) that provides minimally intrusive methods for dynamically monitoring and analyzing deeply integrated hardware and software components within embedded systems. The SOF monitors hardware and software events by inserting additional logic within hardware cores and by listening to processor trace ports. The SOF provides visibility for monitoring complex execution behavior of software applications without affecting the system execution. The SOF utilizes a dedicated event-streaming interface that allows efficient observation and analysis of rapidly occurring events at runtime. The event-streaming interface supports three alternatives: (1) an in-order priority-based event stream controller, (2) a round-robin priority-based event stream controller, and (3) a priority-level based event stream controller. The in-order priority-based event stream controller, which uses efficient pipelined hardware architecture, ensures that events are reported in-order based on the time of the event occurrence. While the in-order priority-based event stream controller provides high throughput for reporting events, significant area requirement can be incurred. The round-robin priority-based event stream controller is an area-efficient event stream ordering technique with acceptable tradeoffs in event stream throughput. To further reduce area requirement, the SOF supports a priority-level based event stream controller that provides an in-ordering method with smaller area requirements than the round-robin priority-based event stream controller. Comprehensive experimental results using a complete prototype system implementation are presented to quantify the tradeoffs in area, throughput, and latency for the various event streaming interfaces considering several execution scenarios.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectruntime testingen_US
dc.subjectsystem observabilityen_US
dc.subjectverificationen_US
dc.subjectin-situ system monitoringen_US
dc.subjectElectrical & Computer Engineeringen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical & Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLysecky, Romanen_US
dc.contributor.committeememberLysecky, Romanen_US
dc.contributor.committeememberAkoghu, Alien_US
dc.contributor.committeememberWang, Meilingen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.