Persistent Link:
http://hdl.handle.net/10150/337309
Title:
Mapping Student Thinking in Chemical Synthesis
Author:
Weinrich, Melissa
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In order to support the development of learning progressions about central ideas and practices in different disciplines, we need detailed analyses of the implicit assumptions and reasoning strategies that guide students' thinking at different educational levels. In the particular case of chemistry, understanding how new chemical substances are produced (chemical synthesis) is of critical importance. Thus, we have used a qualitative research approach based on individual interviews with first semester general chemistry students (n = 16), second semester organic chemistry students (n = 15), advanced undergraduates (n = 9), first year graduate students (n = 15), and PhD candidates (n = 16) to better characterize diverse students' underlying cognitive elements (conceptual modes and modes of reasoning) when thinking about chemical synthesis. Our results reveal a great variability in the cognitive resources and strategies used by students with different levels of training in the discipline to make decisions, particularly at intermediate levels of expertise. The specific nature of the task had a strong influence on the conceptual sophistication and mode of reasoning that students exhibited. Nevertheless, our data analysis has allowed us to identify common modes of reasoning and assumptions that seem to guide students' thinking at different educational levels. Our results should facilitate the development of learning progressions that help improve chemistry instruction, curriculum, and assessment.
Type:
text; Electronic Dissertation
Keywords:
Chemistry
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Talanquer, Vicente

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleMapping Student Thinking in Chemical Synthesisen_US
dc.creatorWeinrich, Melissaen_US
dc.contributor.authorWeinrich, Melissaen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn order to support the development of learning progressions about central ideas and practices in different disciplines, we need detailed analyses of the implicit assumptions and reasoning strategies that guide students' thinking at different educational levels. In the particular case of chemistry, understanding how new chemical substances are produced (chemical synthesis) is of critical importance. Thus, we have used a qualitative research approach based on individual interviews with first semester general chemistry students (n = 16), second semester organic chemistry students (n = 15), advanced undergraduates (n = 9), first year graduate students (n = 15), and PhD candidates (n = 16) to better characterize diverse students' underlying cognitive elements (conceptual modes and modes of reasoning) when thinking about chemical synthesis. Our results reveal a great variability in the cognitive resources and strategies used by students with different levels of training in the discipline to make decisions, particularly at intermediate levels of expertise. The specific nature of the task had a strong influence on the conceptual sophistication and mode of reasoning that students exhibited. Nevertheless, our data analysis has allowed us to identify common modes of reasoning and assumptions that seem to guide students' thinking at different educational levels. Our results should facilitate the development of learning progressions that help improve chemistry instruction, curriculum, and assessment.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectChemistryen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorTalanquer, Vicenteen_US
dc.contributor.committeememberTalanquer, Vicenteen_US
dc.contributor.committeememberChristie, Hamishen_US
dc.contributor.committeememberElfring, Lisaen_US
dc.contributor.committeememberJewett, Johnen_US
dc.contributor.committeememberBolger, Mollyen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.