Persistent Link:
http://hdl.handle.net/10150/337293
Title:
Pentoxifylline As An Adjuvant Treatment In Renal Cell Carcinoma
Author:
Mastrandrea, Nicholas Joseph
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Cyclin D1, a proto-oncogene, is required for progression from the G1 phase into the S phase of the cell cycle. Over-expression of cyclin D1 causes an increase in cell cycle progression and cell proliferation, implicating it in a variety of cancers including renal cell carcinoma (RCC). The rodent RCC cell model, QTRRE, and human RCC cell models, ACHN, 786-O and Caki-2, exhibit elevated levels of cyclin D1. Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor, is an FDA-approved hemorheologic agent used to treat intermittent claudication, stemming from peripheral vascular diseases, as well as other diseases involving defective locoregional blood flow. Treatment of QTRRE, ACHN, 786-O and Caki-2 with PTX caused a time- (0-24 hrs) and dose- (0-1.0 mg/mL) dependent decrease of cyclin D1 protein and p-Rb levels in whole cell lysate as well as cytosolic and nuclear fractions, albeit, to different extents within the models. Concomitant with cyclin D1 and p-Rb decrease, enhanced G1 phase cell cycle arrest was observed in the RCC models. Mechanistic studies in these RCC cell models were carried out to determine PTXs mechanism of action with regard to cyclin D1 protein level decrease. RT-PCR analysis showed no significant changes in cyclin D1 mRNA copy number in time- (0-24 hrs) and dose- (0-1.0 mg/mL) dependent PTX treatments. However, such treatments caused decrease in p-4EBP1 (Ser65), p-4EBP1 (Thr70), and p-4EBP1 (Thr37/46). Because PTX's ability to decrease cyclin D1 protein was prevented in the presence of the proteasome inhibitor, MG-132, studies were performed to determine whether cyclin D1 stability was decreased during PTX treatment. Cyclin D1 degradation is initiated by phosphorylation of residue Thr286 by GSK-3β. Inhibition of GSK-3β with LiCl or knockdown via siRNA in the presence of PTX failed to block cyclin D1 decrease. Moreover, PTX treatment in the presence of MG-132 revealed no significant increase in cyclin D1 p-Thr286 compared to control. Finally, using the protein synthesis inhibitor, CHX, PTX caused no significant decrease in cyclin D1 t₁/₂ (wt-HA and T286A-HA) compared to control. Sorafenib, a broad-spectrum (cRAF, bRAF, KIT, FLT-3, VEGFR-2, VEGFR-3, and PDGFR-β) kinase inhibitor, is FDA-approved for the treatment of RCC. Studies with sorafenib and PTX in the ACHN cell model were carried out to determine PTXs possible adjuvant role in inhibiting cell growth via cyclin D1 decrease and G1 phase arrest. MTS data showed PTX potentiates the anti-proliferative effects of sorafenib. PTX pre-treatment for 24 hrs was also lowered the effective dose of sorafenib from 50 μM to 5 μM. Further, ACHN xenograft tumor volumes from mice treated with PTX and sorafenib displayed significantly higher tumor growth inhibition compared to either drug treatment alone or vehicle. Finally, drug treated ACHN xenograft tissue displayed significantly lower cyclin D1, p-RB and p-4EBP1 levels. These results demonstrate a novel anti-cancer property of PTX and suggest its use as a possible adjuvant therapy in RCC treatment should be further explored.
Type:
text; Electronic Dissertation
Keywords:
ACHN; Cyclin D1; Pentoxifylline; Renal Cell Carcinoma; Pharmacology & Toxicology; 4EBP1
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Pharmacology & Toxicology
Degree Grantor:
University of Arizona
Advisor:
Lau, Serrine S.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePentoxifylline As An Adjuvant Treatment In Renal Cell Carcinomaen_US
dc.creatorMastrandrea, Nicholas Josephen_US
dc.contributor.authorMastrandrea, Nicholas Josephen_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCyclin D1, a proto-oncogene, is required for progression from the G1 phase into the S phase of the cell cycle. Over-expression of cyclin D1 causes an increase in cell cycle progression and cell proliferation, implicating it in a variety of cancers including renal cell carcinoma (RCC). The rodent RCC cell model, QTRRE, and human RCC cell models, ACHN, 786-O and Caki-2, exhibit elevated levels of cyclin D1. Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor, is an FDA-approved hemorheologic agent used to treat intermittent claudication, stemming from peripheral vascular diseases, as well as other diseases involving defective locoregional blood flow. Treatment of QTRRE, ACHN, 786-O and Caki-2 with PTX caused a time- (0-24 hrs) and dose- (0-1.0 mg/mL) dependent decrease of cyclin D1 protein and p-Rb levels in whole cell lysate as well as cytosolic and nuclear fractions, albeit, to different extents within the models. Concomitant with cyclin D1 and p-Rb decrease, enhanced G1 phase cell cycle arrest was observed in the RCC models. Mechanistic studies in these RCC cell models were carried out to determine PTXs mechanism of action with regard to cyclin D1 protein level decrease. RT-PCR analysis showed no significant changes in cyclin D1 mRNA copy number in time- (0-24 hrs) and dose- (0-1.0 mg/mL) dependent PTX treatments. However, such treatments caused decrease in p-4EBP1 (Ser65), p-4EBP1 (Thr70), and p-4EBP1 (Thr37/46). Because PTX's ability to decrease cyclin D1 protein was prevented in the presence of the proteasome inhibitor, MG-132, studies were performed to determine whether cyclin D1 stability was decreased during PTX treatment. Cyclin D1 degradation is initiated by phosphorylation of residue Thr286 by GSK-3β. Inhibition of GSK-3β with LiCl or knockdown via siRNA in the presence of PTX failed to block cyclin D1 decrease. Moreover, PTX treatment in the presence of MG-132 revealed no significant increase in cyclin D1 p-Thr286 compared to control. Finally, using the protein synthesis inhibitor, CHX, PTX caused no significant decrease in cyclin D1 t₁/₂ (wt-HA and T286A-HA) compared to control. Sorafenib, a broad-spectrum (cRAF, bRAF, KIT, FLT-3, VEGFR-2, VEGFR-3, and PDGFR-β) kinase inhibitor, is FDA-approved for the treatment of RCC. Studies with sorafenib and PTX in the ACHN cell model were carried out to determine PTXs possible adjuvant role in inhibiting cell growth via cyclin D1 decrease and G1 phase arrest. MTS data showed PTX potentiates the anti-proliferative effects of sorafenib. PTX pre-treatment for 24 hrs was also lowered the effective dose of sorafenib from 50 μM to 5 μM. Further, ACHN xenograft tumor volumes from mice treated with PTX and sorafenib displayed significantly higher tumor growth inhibition compared to either drug treatment alone or vehicle. Finally, drug treated ACHN xenograft tissue displayed significantly lower cyclin D1, p-RB and p-4EBP1 levels. These results demonstrate a novel anti-cancer property of PTX and suggest its use as a possible adjuvant therapy in RCC treatment should be further explored.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectACHNen_US
dc.subjectCyclin D1en_US
dc.subjectPentoxifyllineen_US
dc.subjectRenal Cell Carcinomaen_US
dc.subjectPharmacology & Toxicologyen_US
dc.subject4EBP1en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePharmacology & Toxicologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLau, Serrine S.en_US
dc.contributor.committeememberLau, Serrine S.en_US
dc.contributor.committeememberMonks, Terrence J.en_US
dc.contributor.committeememberZhang, Donnaen_US
dc.contributor.committeememberVaillancourt, Richarden_US
dc.contributor.committeememberTsaprailis, Georgeen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.