Thermal Ecology of Mutualism: The Consequences of Temperature for Ant-Plant Interactions

Persistent Link:
http://hdl.handle.net/10150/321375
Title:
Thermal Ecology of Mutualism: The Consequences of Temperature for Ant-Plant Interactions
Author:
Fitzpatrick, Ginny M.
Issue Date:
2014
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Mutualism is an often-complex positive interaction between species, each of which responds independently to varying biotic and abiotic conditions. Temperature is an important factor that can affect species both directly (e.g., physiologically) and indirectly (e.g., via its effects on interactions with consumers, competitors, and mutualists). Although much research has investigated the consequences of temperature for individual organisms, the effects of temperature on the formation, dissolution, and success of species interactions remain minimally understood. The unique ways in which species respond to temperature likely play a role in structuring communities. Environmental heterogeneity, including the thermal environment, can promote coexistence when species exploit resources in different ways, such as by occupying different thermal niches. This dissertation examines the consequences of temperature for participants in an ant-plant protection mutualism, and investigates how the thermal ecology of individual species affects the interaction. Many mutualisms involve multiple species, or interacting guilds. In these mutualisms, species interact with partner species that vary in multiple characteristics. Mutualists are quite sensitive to both partner quantity and partner quality (e.g., their effectiveness at performing a beneficial task). Mutualisms between ants and plants are common across a variety of habitats worldwide, which differ in thermal range, fluctuation, and seasonality. In light of ants’ well-studied and predictable responses to temperature, ant-plant interaction networks provide excellent systems for studying the thermal ecology of mutualisms. In ant-plant protection mutualisms, each of the participants (ants, plants, and enemies) likely differs in its response to temperature. In addition to the direct effects of temperature on ant species, temperature may affect the magnitude of mutualistic interactions among species by affecting the quantity and quality of the reward offered to partners, and the activity of the partners themselves and the plant’s enemies (i.e., herbivores). If herbivores are more thermally tolerant than the mutualistic ant defenders, the consequences for plants may well be severe; however, if herbivores are less thermally tolerant than are the ants, the effects of rising temperatures might be mitigated: although less-effective ants might be more frequent in a warmer world, herbivores would be less abundant there. This dissertation describes the thermal ecology of the participants in a mutualism between the cactus Ferocactus wislizeni and four of its common ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the extreme environment of the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plant, and in exchange protect the plants from herbivores, including a common phytophagous cactus bug, Narnia pallidicornis (Hemiptera: Coreidae). Specifically, it investigates how thermal ecology of the individual species affects the interactions among those species. Also, it considers the impact of a tradeoff between behavioral dominance and thermal tolerance among ants.
Type:
text; Electronic Dissertation
Keywords:
climate change; desert; mutualism; species interactions; temperature; Ecology & Evolutionary Biology; ant-plant protection
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Ecology & Evolutionary Biology
Degree Grantor:
University of Arizona
Advisor:
Bronstein, Judith L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleThermal Ecology of Mutualism: The Consequences of Temperature for Ant-Plant Interactionsen_US
dc.creatorFitzpatrick, Ginny M.en_US
dc.contributor.authorFitzpatrick, Ginny M.en_US
dc.date.issued2014-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMutualism is an often-complex positive interaction between species, each of which responds independently to varying biotic and abiotic conditions. Temperature is an important factor that can affect species both directly (e.g., physiologically) and indirectly (e.g., via its effects on interactions with consumers, competitors, and mutualists). Although much research has investigated the consequences of temperature for individual organisms, the effects of temperature on the formation, dissolution, and success of species interactions remain minimally understood. The unique ways in which species respond to temperature likely play a role in structuring communities. Environmental heterogeneity, including the thermal environment, can promote coexistence when species exploit resources in different ways, such as by occupying different thermal niches. This dissertation examines the consequences of temperature for participants in an ant-plant protection mutualism, and investigates how the thermal ecology of individual species affects the interaction. Many mutualisms involve multiple species, or interacting guilds. In these mutualisms, species interact with partner species that vary in multiple characteristics. Mutualists are quite sensitive to both partner quantity and partner quality (e.g., their effectiveness at performing a beneficial task). Mutualisms between ants and plants are common across a variety of habitats worldwide, which differ in thermal range, fluctuation, and seasonality. In light of ants’ well-studied and predictable responses to temperature, ant-plant interaction networks provide excellent systems for studying the thermal ecology of mutualisms. In ant-plant protection mutualisms, each of the participants (ants, plants, and enemies) likely differs in its response to temperature. In addition to the direct effects of temperature on ant species, temperature may affect the magnitude of mutualistic interactions among species by affecting the quantity and quality of the reward offered to partners, and the activity of the partners themselves and the plant’s enemies (i.e., herbivores). If herbivores are more thermally tolerant than the mutualistic ant defenders, the consequences for plants may well be severe; however, if herbivores are less thermally tolerant than are the ants, the effects of rising temperatures might be mitigated: although less-effective ants might be more frequent in a warmer world, herbivores would be less abundant there. This dissertation describes the thermal ecology of the participants in a mutualism between the cactus Ferocactus wislizeni and four of its common ant defenders (Forelius pruinosus, Crematogaster opuntiae, Solenopsis aurea, and Solenopsis xyloni) in the extreme environment of the Sonoran Desert, USA. The ants are attracted to extrafloral nectar produced by the plant, and in exchange protect the plants from herbivores, including a common phytophagous cactus bug, Narnia pallidicornis (Hemiptera: Coreidae). Specifically, it investigates how thermal ecology of the individual species affects the interactions among those species. Also, it considers the impact of a tradeoff between behavioral dominance and thermal tolerance among ants.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectclimate changeen_US
dc.subjectdeserten_US
dc.subjectmutualismen_US
dc.subjectspecies interactionsen_US
dc.subjecttemperatureen_US
dc.subjectEcology & Evolutionary Biologyen_US
dc.subjectant-plant protectionen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineEcology & Evolutionary Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBronstein, Judith L.en_US
dc.contributor.committeememberBronstein, Judith L.en_US
dc.contributor.committeememberDavidowitz, Goggyen_US
dc.contributor.committeememberDornhaus, Annaen_US
dc.contributor.committeememberHuxman, Travis E.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.