Metal Transfer And Protein-Protein Interactions In The CusCFBA CU(I)/AG(I) Efflux System Of E. Coli

Persistent Link:
http://hdl.handle.net/10150/312754
Title:
Metal Transfer And Protein-Protein Interactions In The CusCFBA CU(I)/AG(I) Efflux System Of E. Coli
Author:
Mealman, Tiffany Diane
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release 31-May-2014
Abstract:
Copper homeostasis in Escherichia coli is mediated in part by a copper sensing system (the Cus system) that includes a tripartite protein complex, CusCBA, which spans both the inner and outer membranes of E. coli. The inner membrane protein, CusA, belongs to the RND superfamily of protein transporters and couples the export of copper ions with an influx of protons. CusB, the membrane fusion protein, is a soluble protein that forms a complex with CusA and is believed to interact with CusC, the outer membrane factor protein. CusF, the fourth component of this system, is a small periplasmic metallochaperone that delivers metal to the CusCBA pump. The research presented in this work describes the elucidation of protein-protein interactions and metal transfer between components of the Cus system. Chemical cross-linking and mass spectrometry reveal that CusF and CusB interact at their metal-binding sites. The N-terminal region of CusB, which includes the metal-binding site, is characterized utilizing a variety of biochemical and molecular tools and demonstrates metal-binding and metal transfer with CusF. Cross-linking experiments and XAS preliminary results reveal a novel interaction between CusF and CusA, which supports our theory that CusA acquires metal from CusF rather than CusB. Together, these findings aid in our understanding of the mechanism of metal transport and the molecular details involved in protein-protein interactions within CusCFBA.
Type:
text; Electronic Dissertation
Keywords:
Chemistry
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Wysocki, Vicki H.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleMetal Transfer And Protein-Protein Interactions In The CusCFBA CU(I)/AG(I) Efflux System Of E. Colien_US
dc.creatorMealman, Tiffany Dianeen_US
dc.contributor.authorMealman, Tiffany Dianeen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease 31-May-2014en_US
dc.description.abstractCopper homeostasis in Escherichia coli is mediated in part by a copper sensing system (the Cus system) that includes a tripartite protein complex, CusCBA, which spans both the inner and outer membranes of E. coli. The inner membrane protein, CusA, belongs to the RND superfamily of protein transporters and couples the export of copper ions with an influx of protons. CusB, the membrane fusion protein, is a soluble protein that forms a complex with CusA and is believed to interact with CusC, the outer membrane factor protein. CusF, the fourth component of this system, is a small periplasmic metallochaperone that delivers metal to the CusCBA pump. The research presented in this work describes the elucidation of protein-protein interactions and metal transfer between components of the Cus system. Chemical cross-linking and mass spectrometry reveal that CusF and CusB interact at their metal-binding sites. The N-terminal region of CusB, which includes the metal-binding site, is characterized utilizing a variety of biochemical and molecular tools and demonstrates metal-binding and metal transfer with CusF. Cross-linking experiments and XAS preliminary results reveal a novel interaction between CusF and CusA, which supports our theory that CusA acquires metal from CusF rather than CusB. Together, these findings aid in our understanding of the mechanism of metal transport and the molecular details involved in protein-protein interactions within CusCFBA.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectChemistryen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWysocki, Vicki H.en_US
dc.contributor.committeememberWysocki, Vicki H.en_US
dc.contributor.committeememberMcEvoy, Megan M.en_US
dc.contributor.committeememberMontfort, William R.en_US
dc.contributor.committeememberBandarian, Vaheen_US
dc.contributor.committeememberGhosh, Indraneelen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.