Persistent Link:
http://hdl.handle.net/10150/312651
Title:
Synthesis of Asymmetric Phthalocyanine Derivatives
Author:
Lu, Chin-Wei
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The work in this dissertation describes improved methods of asymmetrically substituted Pc derivative synthesis addressing some currently encountered problems including: (1) the need for facile synthesis of asymmetric Pc/Nc hybrids; (2) a lack of general methods for producing asymmetric Pc materials with structural diversity. Chapter 1 provides a concise review on Pc and Pc/perylenediimide (PDI) derivatives that have been reported as a part of architecture in monochromophoric or multichromophoric molecules for energy and charge transfer studies. In addition, the intrinsic electronic and photophysical properties suitable for OPV applications, such as charge transfer rate, lifetime of charge separated state, and transfer pathway are also discussed. Chapter 2 details the use of ROMP-Capture-Release to synthesize a small library of asymmetric Pc/Nc hybrids and study of chemical and physical properties of these structurally related asymmetric chromophores and the corresponding symmetric Pc and Nc in both metalated (Zn) and unmetallated form. The extension of the Pc aromatic core as well as the asymmetry afforded by the unique quadrant can result in modulated physical properties, particularly bathochromic shifted electronic absorption spectra. Further modification of the pendent hydroxyl group on the molecule demonstrated the possibility for covalently grafting Pcs onto inorganic contacts such as ITO and TiO₂. Chapter 3 reports the investigation of using an asymmetric Pc as the platform for the preparation of a small library of zinc hexatriazolyl-monohydroxyphthalocyanines via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). The modification of peripheral substituents was demonstrated using azides bearing hydrophobic, photo-crosslinkable, and electroactive moieties. Monitoring the click chemistry by both UV-Vis and FT-IR spectroscopies was performed to provide insight into the role of azide equivalent, reaction time, and catalyst on reaction progress. Chapter 4 describes the synthesis and characterization of a novel series of Pc-PDI dyads with different perylene bay-functional groups (H, thioether, and sulfonyl), as well as phosphonic acid as an anchoring group connected to the perylene moieties, for the studies of molecular-level heterojunction on transparent conductive oxides. The developed model system for further electrochemical analysis was proved to firmly attach to the ITO surface by ATR-UV/Vis spectroscopy.
Type:
text; Electronic Dissertation
Keywords:
Phthalocyanine; Chemistry; Asymmetric
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
McGrath, Dominic

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSynthesis of Asymmetric Phthalocyanine Derivativesen_US
dc.creatorLu, Chin-Weien_US
dc.contributor.authorLu, Chin-Weien_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe work in this dissertation describes improved methods of asymmetrically substituted Pc derivative synthesis addressing some currently encountered problems including: (1) the need for facile synthesis of asymmetric Pc/Nc hybrids; (2) a lack of general methods for producing asymmetric Pc materials with structural diversity. Chapter 1 provides a concise review on Pc and Pc/perylenediimide (PDI) derivatives that have been reported as a part of architecture in monochromophoric or multichromophoric molecules for energy and charge transfer studies. In addition, the intrinsic electronic and photophysical properties suitable for OPV applications, such as charge transfer rate, lifetime of charge separated state, and transfer pathway are also discussed. Chapter 2 details the use of ROMP-Capture-Release to synthesize a small library of asymmetric Pc/Nc hybrids and study of chemical and physical properties of these structurally related asymmetric chromophores and the corresponding symmetric Pc and Nc in both metalated (Zn) and unmetallated form. The extension of the Pc aromatic core as well as the asymmetry afforded by the unique quadrant can result in modulated physical properties, particularly bathochromic shifted electronic absorption spectra. Further modification of the pendent hydroxyl group on the molecule demonstrated the possibility for covalently grafting Pcs onto inorganic contacts such as ITO and TiO₂. Chapter 3 reports the investigation of using an asymmetric Pc as the platform for the preparation of a small library of zinc hexatriazolyl-monohydroxyphthalocyanines via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). The modification of peripheral substituents was demonstrated using azides bearing hydrophobic, photo-crosslinkable, and electroactive moieties. Monitoring the click chemistry by both UV-Vis and FT-IR spectroscopies was performed to provide insight into the role of azide equivalent, reaction time, and catalyst on reaction progress. Chapter 4 describes the synthesis and characterization of a novel series of Pc-PDI dyads with different perylene bay-functional groups (H, thioether, and sulfonyl), as well as phosphonic acid as an anchoring group connected to the perylene moieties, for the studies of molecular-level heterojunction on transparent conductive oxides. The developed model system for further electrochemical analysis was proved to firmly attach to the ITO surface by ATR-UV/Vis spectroscopy.en_US
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectPhthalocyanineen_US
dc.subjectChemistryen_US
dc.subjectAsymmetricen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMcGrath, Dominicen_US
dc.contributor.committeememberMcGrath, Dominicen_US
dc.contributor.committeememberGlass, Richarden_US
dc.contributor.committeememberHamish, Christieen_US
dc.contributor.committeememberLichtenberger, Dennisen_US
dc.contributor.committeememberArmstrong, Nealen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.