Numerical Simulation of 2D Electrothermal Flow Using Boundary Element Method

Persistent Link:
http://hdl.handle.net/10150/312496
Title:
Numerical Simulation of 2D Electrothermal Flow Using Boundary Element Method
Author:
Ren, Qinlong
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Microfluidics and its applications to Lab-on-a-Chip have attracted a lot of attention. Because of the small length scale, the flow is characterized by a low Re number. The governing equations become linear. Boundary element method (BEM) is a very good option for simulating the fluid flow with high accuracy. In this thesis, we present a 2D numerical simulation of the electrothermal flow using BEM. In electrothermal flow the volumetric force is caused by electric field and temperature gradient. The physics is mathematically modeled by (i) Laplace equation for the electrical potential, (ii) Poisson equation for the heat conduction caused by Joule heating, (iii) continuity and Stokes equation for the low Reynolds number flow. We begin by solving the electrical potential and electrical field. The heat conduction is caused by the Joule heating as the heat generation term. Superposition principle is used to solve for the temperature field. The Coulomb and dielectric forces are generated by the electrical field and temperature gradient of the system. The buoyancy force is caused by the non-uniform temperature distribution inside the system. We analyze the Stokes flow problem by superposition of fundamental solution for free-space velocity caused by body force and BEM for the corresponding homogeneous Stokes equation. It is well known that a singularity integral arises when the source point approaches the field point. To overcome this problem, we solve the free-space velocity analytically. For the BEM part, we also calculate all the integrals analytically. With this effort, our solution is more accurate. In addition, we improve the robustness of the matrix system by combining the velocity integral equation with the traction integral equation when we simulate the electrothermal pump. One of our purpose is to design a pump for the microfluidics system. Since the system is a long channel, the flow is fully developed in the area far away from the electrodes. With this assumption, the velocity profile is parabolic at the inlet and outlet of the channel. So we can get appropriate boundary conditions for the BEM part of Stokes equation. Consequently, we can simulate the electrothermal flow in an open channel. In this thesis, we will present the formulation and implementation of BEM to model electrothermal flow. Results of electrical potential, temperature field, Joule heating, electrothermal force, buoyancy force and velocity field will be presented.
Type:
text; Electronic Thesis
Keywords:
Buoyancy force; Coulomb force; Dielectric force; Electrothermal flow; Mechanical Engineering; Boundary element method
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Mechanical Engineering
Degree Grantor:
University of Arizona
Advisor:
Chan, Cho Lik

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleNumerical Simulation of 2D Electrothermal Flow Using Boundary Element Methoden_US
dc.creatorRen, Qinlongen_US
dc.contributor.authorRen, Qinlongen_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMicrofluidics and its applications to Lab-on-a-Chip have attracted a lot of attention. Because of the small length scale, the flow is characterized by a low Re number. The governing equations become linear. Boundary element method (BEM) is a very good option for simulating the fluid flow with high accuracy. In this thesis, we present a 2D numerical simulation of the electrothermal flow using BEM. In electrothermal flow the volumetric force is caused by electric field and temperature gradient. The physics is mathematically modeled by (i) Laplace equation for the electrical potential, (ii) Poisson equation for the heat conduction caused by Joule heating, (iii) continuity and Stokes equation for the low Reynolds number flow. We begin by solving the electrical potential and electrical field. The heat conduction is caused by the Joule heating as the heat generation term. Superposition principle is used to solve for the temperature field. The Coulomb and dielectric forces are generated by the electrical field and temperature gradient of the system. The buoyancy force is caused by the non-uniform temperature distribution inside the system. We analyze the Stokes flow problem by superposition of fundamental solution for free-space velocity caused by body force and BEM for the corresponding homogeneous Stokes equation. It is well known that a singularity integral arises when the source point approaches the field point. To overcome this problem, we solve the free-space velocity analytically. For the BEM part, we also calculate all the integrals analytically. With this effort, our solution is more accurate. In addition, we improve the robustness of the matrix system by combining the velocity integral equation with the traction integral equation when we simulate the electrothermal pump. One of our purpose is to design a pump for the microfluidics system. Since the system is a long channel, the flow is fully developed in the area far away from the electrodes. With this assumption, the velocity profile is parabolic at the inlet and outlet of the channel. So we can get appropriate boundary conditions for the BEM part of Stokes equation. Consequently, we can simulate the electrothermal flow in an open channel. In this thesis, we will present the formulation and implementation of BEM to model electrothermal flow. Results of electrical potential, temperature field, Joule heating, electrothermal force, buoyancy force and velocity field will be presented.en_US
dc.typetexten
dc.typeElectronic Thesisen
dc.subjectBuoyancy forceen_US
dc.subjectCoulomb forceen_US
dc.subjectDielectric forceen_US
dc.subjectElectrothermal flowen_US
dc.subjectMechanical Engineeringen_US
dc.subjectBoundary element methoden_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMechanical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorChan, Cho Liken_US
dc.contributor.committeememberWong, Pak Kinen_US
dc.contributor.committeememberKerschen, Edward J.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.