Improving Distributed Hydrologic Modeling and Global Land Cover Data

Persistent Link:
http://hdl.handle.net/10150/307009
Title:
Improving Distributed Hydrologic Modeling and Global Land Cover Data
Author:
Broxton, Patrick
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Distributed models of the land surface are essential for global climate models because of the importance of land-atmosphere exchanges of water, energy, momentum. They are also used for high resolution hydrologic simulation because of the need to capture non-linear responses to spatially variable inputs. Continued improvements to these models, and the data which they use, is especially important given ongoing changes in climate and land cover. In hydrologic models, important aspects are sometimes neglected due to the need to simplify the models for operational simulation. For example, operational flash flood models do not consider the role of snow and are often lumped (i.e. do not discretize a watershed into multiple units, and so do not fully consider the effect of intense, localized rainstorms). To address this deficiency, an overland flow model is coupled with a subsurface flow model to create a distributed flash flood forecasting system that can simulate flash floods that involve rain on snow. The model is intended for operational use, and there are extensive algorithms to incorporate high-resolution hydrometeorologic data, to assist in the calibration of the models, and to run the model in real time. A second study, which is designed to improve snow simulation in forested environments, demonstrates the importance of explicitly representing a near canopy environment in snow models, instead of only representing open and canopy covered areas (i.e. with % canopy fraction), as is often done. Our modeling, which uses canopy structure information from Aerial Laser Survey Mapping at 1 meter resolution, suggests that areas near trees have more net snow water input than surrounding areas because of the lack of snow interception, shading by the trees, and the effects of wind. In addition, the greatest discrepancy between our model simulations that explicitly represent forest structure and those that do not occur in areas with more canopy edges. In addition, two value-added Land Cover products (land cover type and maximum green vegetation fraction; MGVF) are developed and evaluated. The new products are good successors to current generation land cover products that are used in global models (many of which rely on 20 year old AVHRR land cover data from a single year) because they are based on 10 years of recent MODIS data. There is substantial spurious interannual variability in the MODIS land cover type data, and the MGVF product can vary substantially from year to year depending on climate conditions, suggesting the importance of using climatologies for land cover data. The new land cover type climatology also agrees better with validation sites, and the MGVF climatology is more consistent with other measures of vegetation (e.g. Leaf Area Index) than the older land cover data.
Type:
text; Electronic Dissertation
Keywords:
Land Cover; LiDAR; Maximum Green Vegetation Fraction; MODIS; Snow Modeling; Hydrology; Flash Flood Modeling
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Hydrology
Degree Grantor:
University of Arizona
Advisor:
Troch, Peter A.; Zeng, Xubin

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleImproving Distributed Hydrologic Modeling and Global Land Cover Dataen_US
dc.creatorBroxton, Patricken_US
dc.contributor.authorBroxton, Patricken_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractDistributed models of the land surface are essential for global climate models because of the importance of land-atmosphere exchanges of water, energy, momentum. They are also used for high resolution hydrologic simulation because of the need to capture non-linear responses to spatially variable inputs. Continued improvements to these models, and the data which they use, is especially important given ongoing changes in climate and land cover. In hydrologic models, important aspects are sometimes neglected due to the need to simplify the models for operational simulation. For example, operational flash flood models do not consider the role of snow and are often lumped (i.e. do not discretize a watershed into multiple units, and so do not fully consider the effect of intense, localized rainstorms). To address this deficiency, an overland flow model is coupled with a subsurface flow model to create a distributed flash flood forecasting system that can simulate flash floods that involve rain on snow. The model is intended for operational use, and there are extensive algorithms to incorporate high-resolution hydrometeorologic data, to assist in the calibration of the models, and to run the model in real time. A second study, which is designed to improve snow simulation in forested environments, demonstrates the importance of explicitly representing a near canopy environment in snow models, instead of only representing open and canopy covered areas (i.e. with % canopy fraction), as is often done. Our modeling, which uses canopy structure information from Aerial Laser Survey Mapping at 1 meter resolution, suggests that areas near trees have more net snow water input than surrounding areas because of the lack of snow interception, shading by the trees, and the effects of wind. In addition, the greatest discrepancy between our model simulations that explicitly represent forest structure and those that do not occur in areas with more canopy edges. In addition, two value-added Land Cover products (land cover type and maximum green vegetation fraction; MGVF) are developed and evaluated. The new products are good successors to current generation land cover products that are used in global models (many of which rely on 20 year old AVHRR land cover data from a single year) because they are based on 10 years of recent MODIS data. There is substantial spurious interannual variability in the MODIS land cover type data, and the MGVF product can vary substantially from year to year depending on climate conditions, suggesting the importance of using climatologies for land cover data. The new land cover type climatology also agrees better with validation sites, and the MGVF climatology is more consistent with other measures of vegetation (e.g. Leaf Area Index) than the older land cover data.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectLand Coveren_US
dc.subjectLiDARen_US
dc.subjectMaximum Green Vegetation Fractionen_US
dc.subjectMODISen_US
dc.subjectSnow Modelingen_US
dc.subjectHydrologyen_US
dc.subjectFlash Flood Modelingen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorTroch, Peter A.en_US
dc.contributor.advisorZeng, Xubinen_US
dc.contributor.committeememberTroch, Peter A.en_US
dc.contributor.committeememberZeng, Xubinen_US
dc.contributor.committeememberBrooks, Paul D.en_US
dc.contributor.committeememberDominguez, Francinaen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.