Information Diffusion and Influence Propagation on Social Networks with Marketing Applications

Persistent Link:
http://hdl.handle.net/10150/306134
Title:
Information Diffusion and Influence Propagation on Social Networks with Marketing Applications
Author:
Cheng, Jiesi
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Web and mobile technologies have had such profound impact that we have witnessed significant evolutionary changes in our social, economic and cultural activities. In recent years, online social networking sites such as Twitter, Facebook, Google+, and LinkedIn have gained immense popularity. Such social networks have led to an enormous explosion of network-centric data in a wide variety scenarios, posing unprecedented analytical and computational challenges to MIS researchers. At the same time, the availability of such data offers major research opportunities in various social computing and analytics areas to tackle interesting questions such as: - From a business and marketing perspective, how to mine the novel datasets of online user activities, interpersonal communications and interactions, for developing more successful marketing strategies? - From a system development perspective, how to incorporate massive amounts of available data to assist online users to find relevant, efficient, and timely information? In this dissertation, I explored these research opportunities by studying multiple analytics problems arose from the design and use of social networking services. The first two chapters (Chapter 2 and 3) are intended to study how social network can help to derive a better estimation of customer lifetime value (CLV), in the social gaming context. In Chapter 2, I first conducted an empirical study to demonstrate that friends' activities can serve as significant indicators of a player's CLV. Based on this observation, I proposed a perceptron-based online CLV prediction model considering both individual and friendship information. Preliminary results have shown that the model can be effectively used in online CLV prediction, by evaluating against other commonly-used benchmark methods. In Chapter 3, I further extended the metric of traditional CLV, by incorporating the personal influences on other customers' purchase as an integral part of the lifetime value. The proposed metric was illustrated and tested on seven social games of different genres. The results showed that the new metric can help marketing managers to achieve more successful marketing decisions in user acquisition, user retention, and cross promotion. Chapter 4 is devoted to the design of a recommendation system for micro-blogging. I studied the information diffusion pattern in a micro-blogging site (Twitter.com) and proposed diffusion-based metrics to assess the quality of micro-blogs, and leverage the new metric to implement a novel recommendation framework to help micro-blogging users to efficiently identify quality news feeds. Chapter 5 concludes this dissertation by highlighting major research contributions and future directions.
Type:
text; Electronic Dissertation
Keywords:
Influence Propagation; Information Diffusion; Online Social Networks; Recommendation Systems; Management Information Systems; Customer Lifetime Value
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Management Information Systems
Degree Grantor:
University of Arizona
Advisor:
Zeng, Daniel

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleInformation Diffusion and Influence Propagation on Social Networks with Marketing Applicationsen_US
dc.creatorCheng, Jiesien_US
dc.contributor.authorCheng, Jiesien_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWeb and mobile technologies have had such profound impact that we have witnessed significant evolutionary changes in our social, economic and cultural activities. In recent years, online social networking sites such as Twitter, Facebook, Google+, and LinkedIn have gained immense popularity. Such social networks have led to an enormous explosion of network-centric data in a wide variety scenarios, posing unprecedented analytical and computational challenges to MIS researchers. At the same time, the availability of such data offers major research opportunities in various social computing and analytics areas to tackle interesting questions such as: - From a business and marketing perspective, how to mine the novel datasets of online user activities, interpersonal communications and interactions, for developing more successful marketing strategies? - From a system development perspective, how to incorporate massive amounts of available data to assist online users to find relevant, efficient, and timely information? In this dissertation, I explored these research opportunities by studying multiple analytics problems arose from the design and use of social networking services. The first two chapters (Chapter 2 and 3) are intended to study how social network can help to derive a better estimation of customer lifetime value (CLV), in the social gaming context. In Chapter 2, I first conducted an empirical study to demonstrate that friends' activities can serve as significant indicators of a player's CLV. Based on this observation, I proposed a perceptron-based online CLV prediction model considering both individual and friendship information. Preliminary results have shown that the model can be effectively used in online CLV prediction, by evaluating against other commonly-used benchmark methods. In Chapter 3, I further extended the metric of traditional CLV, by incorporating the personal influences on other customers' purchase as an integral part of the lifetime value. The proposed metric was illustrated and tested on seven social games of different genres. The results showed that the new metric can help marketing managers to achieve more successful marketing decisions in user acquisition, user retention, and cross promotion. Chapter 4 is devoted to the design of a recommendation system for micro-blogging. I studied the information diffusion pattern in a micro-blogging site (Twitter.com) and proposed diffusion-based metrics to assess the quality of micro-blogs, and leverage the new metric to implement a novel recommendation framework to help micro-blogging users to efficiently identify quality news feeds. Chapter 5 concludes this dissertation by highlighting major research contributions and future directions.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectInfluence Propagationen_US
dc.subjectInformation Diffusionen_US
dc.subjectOnline Social Networksen_US
dc.subjectRecommendation Systemsen_US
dc.subjectManagement Information Systemsen_US
dc.subjectCustomer Lifetime Valueen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineManagement Information Systemsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorZeng, Danielen_US
dc.contributor.committeememberZeng, Danielen_US
dc.contributor.committeememberGoes, Pauloen_US
dc.contributor.committeememberLin, Mingfengen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.