Persistent Link:
http://hdl.handle.net/10150/301273
Title:
A Study of Salinity in Effluent Lakes, Puerto Penasco, Sonora, Mexico
Author:
Dunn, Alison L.
Affiliation:
Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721
Issue Date:
2-May-1981
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
An investigation of salt build -up in two saline discharge lakes was conducted during 1979 in Puerto Peñasco, Mexico. Salt water was discharged to the smaller, deeper Lake I from a shrimp aquaculture prototype at an average rate of 70 liters per second. Water flowed to Lake II through a short channel, and exited the system through either evaporation or infiltration into the underlying sandy soil. In an attempt to differentiate between the evaporation and infiltration terms in the water budget, salt-budget equations have been derived for the two-lake system. These equations have been approximated in a series of monthly time steps, using averages of weekly salinity and water level measurements. Due to imprecision in the data, meaningful results have been obtained only for Lake II. The average calculated infiltration rate is 0.015 meters per day, and calculated evaporation rates show good correspondence with pan evaporation records for a station 2 kilometers away from the lakes. Examination of the salt budget equations shows that, under steady-state conditions, the ultimate salinity is finite. Thus, the maximum expected salinity of a lake may be calculated from worst-case (summertime) values of lake volume, inflow, evaporation, and salinity of incoming water.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleA Study of Salinity in Effluent Lakes, Puerto Penasco, Sonora, Mexicoen_US
dc.contributor.authorDunn, Alison L.en_US
dc.contributor.departmentDepartment of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721en_US
dc.date.issued1981-05-02-
dc.rightsCopyright ©, where appropriate, is held by the author.en_US
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractAn investigation of salt build -up in two saline discharge lakes was conducted during 1979 in Puerto Peñasco, Mexico. Salt water was discharged to the smaller, deeper Lake I from a shrimp aquaculture prototype at an average rate of 70 liters per second. Water flowed to Lake II through a short channel, and exited the system through either evaporation or infiltration into the underlying sandy soil. In an attempt to differentiate between the evaporation and infiltration terms in the water budget, salt-budget equations have been derived for the two-lake system. These equations have been approximated in a series of monthly time steps, using averages of weekly salinity and water level measurements. Due to imprecision in the data, meaningful results have been obtained only for Lake II. The average calculated infiltration rate is 0.015 meters per day, and calculated evaporation rates show good correspondence with pan evaporation records for a station 2 kilometers away from the lakes. Examination of the salt budget equations shows that, under steady-state conditions, the ultimate salinity is finite. Thus, the maximum expected salinity of a lake may be calculated from worst-case (summertime) values of lake volume, inflow, evaporation, and salinity of incoming water.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/301273-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.