Persistent Link:
http://hdl.handle.net/10150/301251
Title:
Correcting Tidal Responses in Observed Water Well Levels During Coastal Aquifer Tests
Author:
Popkin, Barney P.
Affiliation:
Dames & Moore, Houston, Texas 77092; Environmental Research Laboratory, University of Arizona, Tucson
Issue Date:
2-May-1981
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
A modified tidal efficiency algorithm, ESTA, was developed to correct observed water well levels in tidally responsive coastal areas to get best estimates of aquifer properties and well production characteristics. The algorithm was developed during groundwater studies in Puerto Peñasco, northeastern Gulf of California, Sonora, Mexico. ESTA predicts standing water well levels in response to tides. ESTA requires initial sea and well calibration data, from which sea-well relationships are calculated. It needs tidal data for the time period when projected standing water well levels are desired. The method uses a single cosine or sine function for rising or falling tides, respectively. ESTA tended to overpredict water levels, especially on rising tides, on the average of about 0.05 ft, as shown in analyses at five coastal well sites completed in low to moderately permeable sand and coquina. ESTA can be improved by application of error analysis, but this will not be necessary in most cases, as errors are generally very small for most aquifers and tidal ranges. When ESTA was applied to an aquifer test in highly permeable coral near Kahuku, northehore Oahu, Hawaii, rising -tide water well levels were overpredicted and falling -tide water well levels were underpredicted by 0.10 and 0.33 ft, respectively. Error analysis reduced these errors to 0.06 and 0.16 ft.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleCorrecting Tidal Responses in Observed Water Well Levels During Coastal Aquifer Testsen_US
dc.contributor.authorPopkin, Barney P.en_US
dc.contributor.departmentDames & Moore, Houston, Texas 77092en_US
dc.contributor.departmentEnvironmental Research Laboratory, University of Arizona, Tucsonen_US
dc.date.issued1981-05-02-
dc.rightsCopyright ©, where appropriate, is held by the author.en_US
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractA modified tidal efficiency algorithm, ESTA, was developed to correct observed water well levels in tidally responsive coastal areas to get best estimates of aquifer properties and well production characteristics. The algorithm was developed during groundwater studies in Puerto Peñasco, northeastern Gulf of California, Sonora, Mexico. ESTA predicts standing water well levels in response to tides. ESTA requires initial sea and well calibration data, from which sea-well relationships are calculated. It needs tidal data for the time period when projected standing water well levels are desired. The method uses a single cosine or sine function for rising or falling tides, respectively. ESTA tended to overpredict water levels, especially on rising tides, on the average of about 0.05 ft, as shown in analyses at five coastal well sites completed in low to moderately permeable sand and coquina. ESTA can be improved by application of error analysis, but this will not be necessary in most cases, as errors are generally very small for most aquifers and tidal ranges. When ESTA was applied to an aquifer test in highly permeable coral near Kahuku, northehore Oahu, Hawaii, rising -tide water well levels were overpredicted and falling -tide water well levels were underpredicted by 0.10 and 0.33 ft, respectively. Error analysis reduced these errors to 0.06 and 0.16 ft.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/301251-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.