Persistent Link:
http://hdl.handle.net/10150/301225
Title:
Hydrologic Evaluation of Topsoiling for Rehabilitating Black Mesa Coal Mine Lands
Author:
Postillion, Frank G.
Affiliation:
Bureau of Land Management, Las Vegas, Nevada
Issue Date:
12-Apr-1980
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
Two experimental paired watersheds on Black Mesa Mine, in the Four -Corners region of Arizona were compared by several hydrologic variables in order to determine their relative capabilities for vegetative reestablishment. From July 1977 to the present, precipitation ranged from 5 to 7 inches; runoff was 7 times lower on the topsoiled watershed. Because of its structureless nature, the non-topsoiled watershed tended to crust and seal the surface. In general, the sediment yield was lower on topsoiled spoils; however, increased sediment yields were observed during intense storms, possibly reflecting the fact that the topsoil was not anchored to the underlying spoils. The non-topsoiled watershed was found to have a higher soil moisture at wilting point (13.8%) and high soluble salts (3,000-5,000 ppm), making water unavailable at higher suctions. The range of available water was higher on the non-topsoiled watershed. Tests indicated that most soil moisture water storage results from winter frontal storms of long duration. A vegetation survey indicated a more successful rate of seedling establishment (8.1 plants/m) on the topsoiled watershed, but with a high subsequent die off rate due to drought conditions. Mechanical treatment of and chemical amendments to spoils and topsoils are discussed. It is concluded that the practice of topsoiling will greatly enhance revegetation of mine spoils in arid environments. If it is necessary to directly revegetate spoil materials without topsoiling, salt and drought tolerant species are recommended.
Keywords:
Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleHydrologic Evaluation of Topsoiling for Rehabilitating Black Mesa Coal Mine Landsen_US
dc.contributor.authorPostillion, Frank G.en_US
dc.contributor.departmentBureau of Land Management, Las Vegas, Nevadaen_US
dc.date.issued1980-04-12-
dc.rightsCopyright ©, where appropriate, is held by the author.en_US
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractTwo experimental paired watersheds on Black Mesa Mine, in the Four -Corners region of Arizona were compared by several hydrologic variables in order to determine their relative capabilities for vegetative reestablishment. From July 1977 to the present, precipitation ranged from 5 to 7 inches; runoff was 7 times lower on the topsoiled watershed. Because of its structureless nature, the non-topsoiled watershed tended to crust and seal the surface. In general, the sediment yield was lower on topsoiled spoils; however, increased sediment yields were observed during intense storms, possibly reflecting the fact that the topsoil was not anchored to the underlying spoils. The non-topsoiled watershed was found to have a higher soil moisture at wilting point (13.8%) and high soluble salts (3,000-5,000 ppm), making water unavailable at higher suctions. The range of available water was higher on the non-topsoiled watershed. Tests indicated that most soil moisture water storage results from winter frontal storms of long duration. A vegetation survey indicated a more successful rate of seedling establishment (8.1 plants/m) on the topsoiled watershed, but with a high subsequent die off rate due to drought conditions. Mechanical treatment of and chemical amendments to spoils and topsoils are discussed. It is concluded that the practice of topsoiling will greatly enhance revegetation of mine spoils in arid environments. If it is necessary to directly revegetate spoil materials without topsoiling, salt and drought tolerant species are recommended.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/301225-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.