Persistent Link:
http://hdl.handle.net/10150/301201
Title:
Well-Field Design Criteria for Coastal Seawater Development
Author:
Popkin, Barney P.
Affiliation:
Environmental Research Laboratory, Tucson International Airport, Tucson, Arizona 85706
Issue Date:
12-Apr-1980
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
The University of Arizona's Environmental Research Laboratory, with the Universidad de Sonora, has operated a research station at Puerto Peñasco on the northeastern Gulf of California, Sonora, Mexico, since 1962. Research projects have included solar distillation, greenhouse agriculture, shrimp aquaculture, and halophyte irrigation. These require a dependable supply of filtered, temperate seawater. Proposed aquacultural expansion requires a large water supply. The thin, coastal, water-table coquinoid-beachrock aquifer has a high permeability, contains seawater and could sustain high yielding wells from a limited area. Well performance indicators (yield, specific capacity, efficiency and losses) are influenced by design, drilling, development and siting, and aquifer properties and hydrogeologic boundaries. Design should include full aquifer penetration, open -area screens, sized gravel pack and proper pump sutmergence. Drilling should be by mudless reverse circulation. Development should consist of simultaneous air lifting and jetting. Siting should include proximity to the recharging Gulf and adequate well spacing. Total well-field production is controlled by individual and collective well performance, and by regional hydrogeologic conditions.
Keywords:
Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleWell-Field Design Criteria for Coastal Seawater Developmenten_US
dc.contributor.authorPopkin, Barney P.en_US
dc.contributor.departmentEnvironmental Research Laboratory, Tucson International Airport, Tucson, Arizona 85706en_US
dc.date.issued1980-04-12-
dc.rightsCopyright ©, where appropriate, is held by the author.en_US
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractThe University of Arizona's Environmental Research Laboratory, with the Universidad de Sonora, has operated a research station at Puerto Peñasco on the northeastern Gulf of California, Sonora, Mexico, since 1962. Research projects have included solar distillation, greenhouse agriculture, shrimp aquaculture, and halophyte irrigation. These require a dependable supply of filtered, temperate seawater. Proposed aquacultural expansion requires a large water supply. The thin, coastal, water-table coquinoid-beachrock aquifer has a high permeability, contains seawater and could sustain high yielding wells from a limited area. Well performance indicators (yield, specific capacity, efficiency and losses) are influenced by design, drilling, development and siting, and aquifer properties and hydrogeologic boundaries. Design should include full aquifer penetration, open -area screens, sized gravel pack and proper pump sutmergence. Drilling should be by mudless reverse circulation. Development should consist of simultaneous air lifting and jetting. Siting should include proximity to the recharging Gulf and adequate well spacing. Total well-field production is controlled by individual and collective well performance, and by regional hydrogeologic conditions.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/301201-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.