Hepatic Stress Response Mechanisms in Progressive Human Nonalcoholic Fatty Liver Disease

Persistent Link:
http://hdl.handle.net/10150/299078
Title:
Hepatic Stress Response Mechanisms in Progressive Human Nonalcoholic Fatty Liver Disease
Author:
Lake, April D.
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide, chronic liver disease of increasing clinical significance. It is closely associated with the rising epidemics of obesity and insulin resistance. Up to 17% of the United States population may progress from the disease stage characterized as simple, benign steatosis to the more severe, inflammatory stage of nonalcoholic steatohepatitis (NASH). This progression occurs through 2nd 'hits' of increased oxidative stress and inflammation to a liver that has been sensitized by lipotoxic stress. NASH is also characterized by increased collagen deposition resulting in fibrosis and architectural rearrangement of the liver. Progressive NAFLD is currently recognized as an important contributor to the development of cryptogenic cirrhosis and subsequent liver-related mortalities (estimated at 30-40% in these patients).The pathological progression of NAFLD, as described by the 'two hit' hypothesis, characterizes the different stages of liver injury. However, the mechanism(s) responsible for the progression to NASH are unknown. Profiling global gene expression and metabolite patterns in human liver samples representing the full spectrum of progressive human NAFLD may reveal potential mechanisms of progressive disease. Human liver samples representing each stage of NAFLD progression were analyzed by methodologies such as high-throughput microarrays, high resolution mass spectrometry, and protein immunoblot techniques. Bioinformatics tools and gene expression/regulation database software were utilized in several studies to characterize the altered hepatic profiles of these patients. Hepatic transcriptomic profiles of ADME (absorption, distribution, metabolism and elimination) and ER (endoplasmic reticulum) stress response genes exhibited initiated hepatoprotective responses in patients with NASH. The endogenous pathways of BA (bile acid) synthesis and BCAA (branched chain amino acid) metabolism also showed evidence of coordinately regulated alterations in response to disease-induced stress in NASH. The transcriptional regulation of the investigated pathways was confirmed by transcription factor binding sites enrichment analysis. The collective response to hepatic stress in human NAFLD, demonstrates a coordinated, hepatoprotective intent that may be utilized for future therapeutics in the battle against progressive liver disease.
Type:
text; Electronic Dissertation
Keywords:
Metabolism and Transport; Metabolomics; Nonalcoholic Fatty Liver Disease; Stress; Transcriptomics; Pharmacology & Toxicology; Liver
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Pharmacology & Toxicology
Degree Grantor:
University of Arizona
Advisor:
Cherrington, Nathan J.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleHepatic Stress Response Mechanisms in Progressive Human Nonalcoholic Fatty Liver Diseaseen_US
dc.creatorLake, April D.en_US
dc.contributor.authorLake, April D.en_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractNonalcoholic fatty liver disease (NAFLD) has become a worldwide, chronic liver disease of increasing clinical significance. It is closely associated with the rising epidemics of obesity and insulin resistance. Up to 17% of the United States population may progress from the disease stage characterized as simple, benign steatosis to the more severe, inflammatory stage of nonalcoholic steatohepatitis (NASH). This progression occurs through 2nd 'hits' of increased oxidative stress and inflammation to a liver that has been sensitized by lipotoxic stress. NASH is also characterized by increased collagen deposition resulting in fibrosis and architectural rearrangement of the liver. Progressive NAFLD is currently recognized as an important contributor to the development of cryptogenic cirrhosis and subsequent liver-related mortalities (estimated at 30-40% in these patients).The pathological progression of NAFLD, as described by the 'two hit' hypothesis, characterizes the different stages of liver injury. However, the mechanism(s) responsible for the progression to NASH are unknown. Profiling global gene expression and metabolite patterns in human liver samples representing the full spectrum of progressive human NAFLD may reveal potential mechanisms of progressive disease. Human liver samples representing each stage of NAFLD progression were analyzed by methodologies such as high-throughput microarrays, high resolution mass spectrometry, and protein immunoblot techniques. Bioinformatics tools and gene expression/regulation database software were utilized in several studies to characterize the altered hepatic profiles of these patients. Hepatic transcriptomic profiles of ADME (absorption, distribution, metabolism and elimination) and ER (endoplasmic reticulum) stress response genes exhibited initiated hepatoprotective responses in patients with NASH. The endogenous pathways of BA (bile acid) synthesis and BCAA (branched chain amino acid) metabolism also showed evidence of coordinately regulated alterations in response to disease-induced stress in NASH. The transcriptional regulation of the investigated pathways was confirmed by transcription factor binding sites enrichment analysis. The collective response to hepatic stress in human NAFLD, demonstrates a coordinated, hepatoprotective intent that may be utilized for future therapeutics in the battle against progressive liver disease.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMetabolism and Transporten_US
dc.subjectMetabolomicsen_US
dc.subjectNonalcoholic Fatty Liver Diseaseen_US
dc.subjectStressen_US
dc.subjectTranscriptomicsen_US
dc.subjectPharmacology & Toxicologyen_US
dc.subjectLiveren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePharmacology & Toxicologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCherrington, Nathan J.en_US
dc.contributor.committeememberSipes, I. Glennen_US
dc.contributor.committeememberZhang, Donna D.en_US
dc.contributor.committeememberRegan, John W.en_US
dc.contributor.committeememberKlimecki, Walter T.en_US
dc.contributor.committeememberCherrington, Nathan J.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.