Accretion and gas flows near Sagittarius A*: Toward an understanding of the central parsec of the Milky Way

Persistent Link:
http://hdl.handle.net/10150/298743
Title:
Accretion and gas flows near Sagittarius A*: Toward an understanding of the central parsec of the Milky Way
Author:
Coker, Robert Francis
Issue Date:
1999
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The strong radio emission from Sgr A*, an object located at the dynamical center of the Milky Way, has been attributed to accretion of interstellar gas by a supermassive compact object or dense cluster of objects. We show that any dynamically stable cluster of objects cannot compress the ambient magnetic field or heat the accreting gas sufficiently to reproduce the spectrum of Sgr A*, reaffirming the paradigm that Sgr A* is a single supermassive black hole. We investigate how such a black hole would interact with its surroundings and attempt to determine observational consequences of this interaction. The complexity of the gas, dust, and stellar dynamics of the central parsec of the Galaxy complicates this problem, however. Focusing our attention on the black hole itself but being constrained by observations of the surrounding gas and stars, we have constructed models of the accretion process. We examine two types of accretion models. The first, involving a cold, massive, fossilized accretion disk, is found to generate too much infrared radiation as infalling gas impacts the disk. The second model is spherical accretion, in which the radio emission from Sgr A* is dominated by magnetic bremsstrahlung. Such a model requires accurate emissivities for a wide range of temperatures and field strengths. In this work, we derive the magnetic bremsstrahlung emissivities and apply them to the spherical accretion model, yielding a spectrum that is fully consistent with the radio emission from Sgr A*. We empirically determine a magnetic field profile that suggests the presence of other phenomena, such as a central magnetic dynamo. In addition, the model predicts that the observed high energy emission from the Galactic Center region is not dominated by emission from the central black hole and its environs.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Astronomy and Astrophysics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Melia, Fulvio

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleAccretion and gas flows near Sagittarius A*: Toward an understanding of the central parsec of the Milky Wayen_US
dc.creatorCoker, Robert Francisen_US
dc.contributor.authorCoker, Robert Francisen_US
dc.date.issued1999en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe strong radio emission from Sgr A*, an object located at the dynamical center of the Milky Way, has been attributed to accretion of interstellar gas by a supermassive compact object or dense cluster of objects. We show that any dynamically stable cluster of objects cannot compress the ambient magnetic field or heat the accreting gas sufficiently to reproduce the spectrum of Sgr A*, reaffirming the paradigm that Sgr A* is a single supermassive black hole. We investigate how such a black hole would interact with its surroundings and attempt to determine observational consequences of this interaction. The complexity of the gas, dust, and stellar dynamics of the central parsec of the Galaxy complicates this problem, however. Focusing our attention on the black hole itself but being constrained by observations of the surrounding gas and stars, we have constructed models of the accretion process. We examine two types of accretion models. The first, involving a cold, massive, fossilized accretion disk, is found to generate too much infrared radiation as infalling gas impacts the disk. The second model is spherical accretion, in which the radio emission from Sgr A* is dominated by magnetic bremsstrahlung. Such a model requires accurate emissivities for a wide range of temperatures and field strengths. In this work, we derive the magnetic bremsstrahlung emissivities and apply them to the spherical accretion model, yielding a spectrum that is fully consistent with the radio emission from Sgr A*. We empirically determine a magnetic field profile that suggests the presence of other phenomena, such as a central magnetic dynamo. In addition, the model predicts that the observed high energy emission from the Galactic Center region is not dominated by emission from the central black hole and its environs.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMelia, Fulvioen_US
dc.contributor.committeememberMelia, Fulvioen_US
dc.contributor.committeememberBarrett, Bruceen_US
dc.contributor.committeememberMcCarthyen_US
dc.contributor.committeememberPinto, Philipen_US
dc.contributor.committeememberShupe, Michaelen_US
dc.identifier.proquest9934856en_US
dc.identifier.bibrecord.b39652312en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.