Electrically Small, Near-Field Resonant Parasitic (NFRP) Antennas Augmented with Passive and Active Circuit Elements to Enhance their Functionality

Persistent Link:
http://hdl.handle.net/10150/297013
Title:
Electrically Small, Near-Field Resonant Parasitic (NFRP) Antennas Augmented with Passive and Active Circuit Elements to Enhance their Functionality
Author:
Zhu, Ning
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Metamaterials have drawn considerable attention because they can exhibit epsilon-negative (ENG) and/or mu-negative (MNG) properties, which in turn can lead to exotic physical effects that can enable interesting, practical applications. For instance, ENG and MNG properties can be engineered to yield double negative (DNG) properties, such as a negative index of refraction, which leads to flat lenses. Similarly, their extreme versions enable cloaking effects. Inspired by such metamaterial properties, a promising methodology has been developed to design electrically small antennas (ESAs). These ESAs use unit cells of metamaterials as their near-field resonant parasitic (NFRP) elements. This new metamaterial-inspired antenna miniaturization method is extended in this dissertation by augmenting the antenna designs with circuits. A rectifying circuit augmentation is used to achieve electrically small, high efficiency rectenna systems. Rectennas are the enabling components of power harvesting and wireless power transmission systems. Electrically small, integrated rectennas have become popular and in demand for several wireless applications including sensor networks and bio-implanted devices. Four global positioning system (GPS) L1 frequency (1.5754 GHz) rectenna systems were designed, fabricated and measured: three resistor-loaded and one supercapacitor-loaded. The simulated and measured results will be described; good agreement between them was obtained. The NFRP ESAs are also augmented with active, non-Foster elements in order to overcome the physical limits of the impedance bandwidth of passive ESA systems. Unlike conventional active external matching network approaches, the non-Foster components are incorporated directly into the NFRP element of the ESA. Three 300 MHz non-Foster circuit-augmented broadband, ESA systems were demonstrated: an Egyptian axe monopole (EAM) antenna, an Egyptian axe dipole (EAD) antenna, and a protractor antenna. The simulated and measured results will be described; reasonable agreement between them was obtained. Moreover, a deeper practical engineering understanding of how lumped components with tighter tolerances, more accurate transistor models, and integrated circuit-based implementations will lead to more satisfactory performance characteristics of the non-Foster circuit-augmented ESAs was accomplished and is also reported.
Type:
text; Electronic Dissertation
Keywords:
Electrical & Computer Engineering
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Electrical & Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Ziolkowski, Richard W.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleElectrically Small, Near-Field Resonant Parasitic (NFRP) Antennas Augmented with Passive and Active Circuit Elements to Enhance their Functionalityen_US
dc.creatorZhu, Ningen_US
dc.contributor.authorZhu, Ningen_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMetamaterials have drawn considerable attention because they can exhibit epsilon-negative (ENG) and/or mu-negative (MNG) properties, which in turn can lead to exotic physical effects that can enable interesting, practical applications. For instance, ENG and MNG properties can be engineered to yield double negative (DNG) properties, such as a negative index of refraction, which leads to flat lenses. Similarly, their extreme versions enable cloaking effects. Inspired by such metamaterial properties, a promising methodology has been developed to design electrically small antennas (ESAs). These ESAs use unit cells of metamaterials as their near-field resonant parasitic (NFRP) elements. This new metamaterial-inspired antenna miniaturization method is extended in this dissertation by augmenting the antenna designs with circuits. A rectifying circuit augmentation is used to achieve electrically small, high efficiency rectenna systems. Rectennas are the enabling components of power harvesting and wireless power transmission systems. Electrically small, integrated rectennas have become popular and in demand for several wireless applications including sensor networks and bio-implanted devices. Four global positioning system (GPS) L1 frequency (1.5754 GHz) rectenna systems were designed, fabricated and measured: three resistor-loaded and one supercapacitor-loaded. The simulated and measured results will be described; good agreement between them was obtained. The NFRP ESAs are also augmented with active, non-Foster elements in order to overcome the physical limits of the impedance bandwidth of passive ESA systems. Unlike conventional active external matching network approaches, the non-Foster components are incorporated directly into the NFRP element of the ESA. Three 300 MHz non-Foster circuit-augmented broadband, ESA systems were demonstrated: an Egyptian axe monopole (EAM) antenna, an Egyptian axe dipole (EAD) antenna, and a protractor antenna. The simulated and measured results will be described; reasonable agreement between them was obtained. Moreover, a deeper practical engineering understanding of how lumped components with tighter tolerances, more accurate transistor models, and integrated circuit-based implementations will lead to more satisfactory performance characteristics of the non-Foster circuit-augmented ESAs was accomplished and is also reported.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectElectrical & Computer Engineeringen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical & Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorZiolkowski, Richard W.en_US
dc.contributor.committeememberXin, Haoen_US
dc.contributor.committeememberDvorak, Steven L.en_US
dc.contributor.committeememberZiolkowski, Richard W.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.