Persistent Link:
http://hdl.handle.net/10150/296409
Title:
Mapping the Areal Precipitation over Arizona - Using Kriging Technique
Author:
Karnieli, Arnon
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Tucson, Arizona 85719; University of Arizona, Water Resources Research Center
Issue Date:
16-Apr-1988
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
The classical methods for interpolating and spatial averaging of precipitation fields fail to quantify the accuracy of the estimate. On the other hand, kriging is an interpolation method for predicting values of regionalized variables at points (punctual kriging) or average values over an area (block kriging). This paper demonstrates the use of the kriging method for mapping and evaluating precipitation data for the state of Arizona. Using 158 rain gage stations with 30 years or more of record, the precipitation over the state has been modeled as a realization of a two dimensional random field taking into consideration the spatial variability conditions. Three data sets have been used: (1) the mean annual precipitation over the state; (2) the mean summer rainy season; and (3) the mean winter rainy season. Validation of the empirical semi-variogram for a constant drift case indicated that the exponential model was appropriate for all the data sets. In addition to a global kriging analysis, the data have been examined under an anisotropic assumption which reflects the topographic structure of the state.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleMapping the Areal Precipitation over Arizona - Using Kriging Techniqueen_US
dc.contributor.authorKarnieli, Arnonen_US
dc.contributor.departmentU.S. Department of Agriculture, Agricultural Research Service, Tucson, Arizona 85719en_US
dc.contributor.departmentUniversity of Arizona, Water Resources Research Centeren_US
dc.date.issued1988-04-16-
dc.rightsCopyright ©, where appropriate, is held by the author.-
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractThe classical methods for interpolating and spatial averaging of precipitation fields fail to quantify the accuracy of the estimate. On the other hand, kriging is an interpolation method for predicting values of regionalized variables at points (punctual kriging) or average values over an area (block kriging). This paper demonstrates the use of the kriging method for mapping and evaluating precipitation data for the state of Arizona. Using 158 rain gage stations with 30 years or more of record, the precipitation over the state has been modeled as a realization of a two dimensional random field taking into consideration the spatial variability conditions. Three data sets have been used: (1) the mean annual precipitation over the state; (2) the mean summer rainy season; and (3) the mean winter rainy season. Validation of the empirical semi-variogram for a constant drift case indicated that the exponential model was appropriate for all the data sets. In addition to a global kriging analysis, the data have been examined under an anisotropic assumption which reflects the topographic structure of the state.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/296409-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.