Persistent Link:
http://hdl.handle.net/10150/296389
Title:
Effects of the Green Valley Wastewater Treatment Facility Upon Groundwater Quality
Author:
Postillion, Frank G.; Block, Michael W.; Merz, August
Affiliation:
Pima Association of Governments, Tucson, Arizona
Issue Date:
19-Apr-1986
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
The Green Valley Wastewater Treatment Facility (GVWWTF) is about 20 miles south of Tucson, Arizona. Locally, the aquifer consists of interbedded sands, silts and gravels. Depth to water near the facility is about 160 feet with transmissivity ranging from 32,000 to 48,000 gpd /ft. Ground water quality has historically been poor near the facility due to deep percolation of irrigation return flow. With the retirement of farm land, however, ground water quality has improved considerably. The only problem with well water downgradient of GVWWTF has been with total coliform where several samples exceeded public drinking water standards. Current inflow of about 1.1 mgd will increase to 4.5 mgd by 2005. Flow net and mass balance analyses indicate effluent recharge by percolation beds will increase from 1060 AF /year to 4130 AF /year during this period. A mass balance model predicts TDS will increase from about 585 to 615 mg/l, nitrate-N will increase from 9.2 to 9.9 mg/l, chloride will increase from 50 to 75 mg/1, and sulfate will decrease by 25 mg/l to 115 mg/l. Further study of pond disinfection for prevention of microbiological contamination is suggested. Additionally, effluent reuse and an enhanced monitoring program including upgradient and downgradient wells are encouraged.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleEffects of the Green Valley Wastewater Treatment Facility Upon Groundwater Qualityen_US
dc.contributor.authorPostillion, Frank G.en_US
dc.contributor.authorBlock, Michael W.en_US
dc.contributor.authorMerz, Augusten_US
dc.contributor.departmentPima Association of Governments, Tucson, Arizonaen_US
dc.date.issued1986-04-19-
dc.rightsCopyright ©, where appropriate, is held by the author.-
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractThe Green Valley Wastewater Treatment Facility (GVWWTF) is about 20 miles south of Tucson, Arizona. Locally, the aquifer consists of interbedded sands, silts and gravels. Depth to water near the facility is about 160 feet with transmissivity ranging from 32,000 to 48,000 gpd /ft. Ground water quality has historically been poor near the facility due to deep percolation of irrigation return flow. With the retirement of farm land, however, ground water quality has improved considerably. The only problem with well water downgradient of GVWWTF has been with total coliform where several samples exceeded public drinking water standards. Current inflow of about 1.1 mgd will increase to 4.5 mgd by 2005. Flow net and mass balance analyses indicate effluent recharge by percolation beds will increase from 1060 AF /year to 4130 AF /year during this period. A mass balance model predicts TDS will increase from about 585 to 615 mg/l, nitrate-N will increase from 9.2 to 9.9 mg/l, chloride will increase from 50 to 75 mg/1, and sulfate will decrease by 25 mg/l to 115 mg/l. Further study of pond disinfection for prevention of microbiological contamination is suggested. Additionally, effluent reuse and an enhanced monitoring program including upgradient and downgradient wells are encouraged.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/296389-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.