Persistent Link:
http://hdl.handle.net/10150/296377
Title:
Minimizing the Effects of Cement Slurry Bleed-Water on Water Quality Samples
Author:
Evans, Lauren G.
Affiliation:
Arizona Department of Health Services, Phoenix, Arizona
Issue Date:
18-Apr-1987
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
Some groundwater monitor wells produce water quality samples with anomalously high pH measurements. In some of these wells it is obvious that these water quality samples are affected by the bleed-water from the cement used to seal the annuli. To gain an understanding as to why cement bleed -water occurs and how it can be controlled, literature from both the cement and petroleum industries are reviewed. Cement is a very alkaline material. When too much water is used to prepare the slurry, alkaline bleed -water can drain through or along the cement sheath surrounding the casing. This results in an increase in the pH measurements of groundwater samples. This bleed-water can separate from the cement in-three ways: it can move into the formation during cementing, it can accumulate within the cement forming pockets and channels behind the casing, and it can remain within the interconnected capillaries that exist throughout the cement sheath. The drainage of alkaline bleed -water from the cement can be greatly reduced by controlling the amount of water used in the preparation of the slurry. The amount of water added can be monitored during well construction by measuring the slurry density. By implementing this quality control procedure during well construction along with specifying the correct amount of mix-water for the slurry, the elevated pH levels in groundwater samples should be greatly reduced if not completely eliminated.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleMinimizing the Effects of Cement Slurry Bleed-Water on Water Quality Samplesen_US
dc.contributor.authorEvans, Lauren G.en_US
dc.contributor.departmentArizona Department of Health Services, Phoenix, Arizonaen_US
dc.date.issued1987-04-18-
dc.rightsCopyright ©, where appropriate, is held by the author.-
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractSome groundwater monitor wells produce water quality samples with anomalously high pH measurements. In some of these wells it is obvious that these water quality samples are affected by the bleed-water from the cement used to seal the annuli. To gain an understanding as to why cement bleed -water occurs and how it can be controlled, literature from both the cement and petroleum industries are reviewed. Cement is a very alkaline material. When too much water is used to prepare the slurry, alkaline bleed -water can drain through or along the cement sheath surrounding the casing. This results in an increase in the pH measurements of groundwater samples. This bleed-water can separate from the cement in-three ways: it can move into the formation during cementing, it can accumulate within the cement forming pockets and channels behind the casing, and it can remain within the interconnected capillaries that exist throughout the cement sheath. The drainage of alkaline bleed -water from the cement can be greatly reduced by controlling the amount of water used in the preparation of the slurry. The amount of water added can be monitored during well construction by measuring the slurry density. By implementing this quality control procedure during well construction along with specifying the correct amount of mix-water for the slurry, the elevated pH levels in groundwater samples should be greatly reduced if not completely eliminated.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/296377-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.