Persistent Link:
http://hdl.handle.net/10150/296129
Title:
Questions Raised by the Tucson Flood of 1983
Author:
Baker, Victor R.
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721
Issue Date:
7-Apr-1984
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
Post-disaster studies of the October 1983 flood lead to serious questions concerning the applicability to southern Arizona of nationally standardized procedures for flood hazard evaluation. When the U.S. Water Resources Council method of determining flood flow frequency is applied to the Santa Cruz River annual peak flow record at Tucson for the period 1915-1982, the 1983 flood discharge is predicted to have an exceedence probability of less than 0.001. Hydro-climatological considerations suggest that such large floods occur much more frequently. The standard procedure for flood hazard zonation utilizes step-backwater calculations for the extant channel and valley floor geometry to route the discharges obtained from the standard flood flow frequency analysis. This procedure, as used in the Federal Emergency Management Agency flood insurance study, greatly overestimated the areas of overbank flooding along the Santa Cruz River as experienced in the 1983 flood. A detailed post-flood study was performed to assess channel change for reaches of Pantano Wash, Tanque Verde Creek, the Rillito, and the Santa Cruz River in the Tucson Basin. Bank erosion occurred as cutbank recession of actively migrating meander bends except where local areas of bank were preserved by revetments. Where revetments remained intact during the flooding they served to concentrate and enhance bank erosion in the unprotected reaches immediately downstream. From an overall river management perspective, piecemeal bank protection generates greater channel instability than does no protection at all.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleQuestions Raised by the Tucson Flood of 1983en_US
dc.contributor.authorBaker, Victor R.en_US
dc.contributor.departmentDepartment of Geosciences, University of Arizona, Tucson, Arizona 85721en_US
dc.date.issued1984-04-07-
dc.rightsCopyright ©, where appropriate, is held by the author.-
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractPost-disaster studies of the October 1983 flood lead to serious questions concerning the applicability to southern Arizona of nationally standardized procedures for flood hazard evaluation. When the U.S. Water Resources Council method of determining flood flow frequency is applied to the Santa Cruz River annual peak flow record at Tucson for the period 1915-1982, the 1983 flood discharge is predicted to have an exceedence probability of less than 0.001. Hydro-climatological considerations suggest that such large floods occur much more frequently. The standard procedure for flood hazard zonation utilizes step-backwater calculations for the extant channel and valley floor geometry to route the discharges obtained from the standard flood flow frequency analysis. This procedure, as used in the Federal Emergency Management Agency flood insurance study, greatly overestimated the areas of overbank flooding along the Santa Cruz River as experienced in the 1983 flood. A detailed post-flood study was performed to assess channel change for reaches of Pantano Wash, Tanque Verde Creek, the Rillito, and the Santa Cruz River in the Tucson Basin. Bank erosion occurred as cutbank recession of actively migrating meander bends except where local areas of bank were preserved by revetments. Where revetments remained intact during the flooding they served to concentrate and enhance bank erosion in the unprotected reaches immediately downstream. From an overall river management perspective, piecemeal bank protection generates greater channel instability than does no protection at all.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/296129-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.