Persistent Link:
http://hdl.handle.net/10150/296095
Title:
Ground Water Contamination of the Estes Landfill, Phoenix, Arizona
Author:
Budzinski, Joan; Angell, James
Affiliation:
City of Phoenix; Arizona Department of Health Services
Issue Date:
16-Apr-1983
Rights:
Copyright ©, where appropriate, is held by the author.
Collection Information:
This article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.
Publisher:
Arizona-Nevada Academy of Science
Journal:
Hydrology and Water Resources in Arizona and the Southwest
Abstract:
The ground water contamination potential of the Estes Landfill, Phoenix, Arizona has been evaluated by the City of Phoenix and the Arizona Dept. of Health Services. The landfill is located in a recharge zone of the Salt River Valley aquifer. The aquifer is under water table conditions. The depth to ground water ranges from 80 feet to 15 feet. Ground water monitoring wells were installed up- gradient and down -gradient from the landfill. Ground water samples collected from the wells during flow events of the Salt River indicated leachate production from the landfill; a mound of ground water develops and intrudes the solid waste. The leachate characteristics include volatile organics and heavy metals: vinyl chloride, trichloroethylene and barium. Analysis of solid waste borings indicated only small quantities of organics and heavy metals. Currently the ground water is used for industrial and agricultural purposes. However, the ground water could be used as a domestic water supply because it has an acceptable ambient water quality. Ground water monitoring is continuing with the intent of using the data to design a leachate migration control system for the landfill and to distinguish contaminants from an adjacent landfill.
Keywords:
Hydrology -- Arizona.; Water resources development -- Arizona.; Hydrology -- Southwestern states.; Water resources development -- Southwestern states.
ISSN:
0272-6106

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleGround Water Contamination of the Estes Landfill, Phoenix, Arizonaen_US
dc.contributor.authorBudzinski, Joanen_US
dc.contributor.authorAngell, Jamesen_US
dc.contributor.departmentCity of Phoenixen_US
dc.contributor.departmentArizona Department of Health Servicesen_US
dc.date.issued1983-04-16-
dc.rightsCopyright ©, where appropriate, is held by the author.-
dc.description.collectioninformationThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact anashydrology@gmail.com.en_US
dc.publisherArizona-Nevada Academy of Scienceen_US
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.description.abstractThe ground water contamination potential of the Estes Landfill, Phoenix, Arizona has been evaluated by the City of Phoenix and the Arizona Dept. of Health Services. The landfill is located in a recharge zone of the Salt River Valley aquifer. The aquifer is under water table conditions. The depth to ground water ranges from 80 feet to 15 feet. Ground water monitoring wells were installed up- gradient and down -gradient from the landfill. Ground water samples collected from the wells during flow events of the Salt River indicated leachate production from the landfill; a mound of ground water develops and intrudes the solid waste. The leachate characteristics include volatile organics and heavy metals: vinyl chloride, trichloroethylene and barium. Analysis of solid waste borings indicated only small quantities of organics and heavy metals. Currently the ground water is used for industrial and agricultural purposes. However, the ground water could be used as a domestic water supply because it has an acceptable ambient water quality. Ground water monitoring is continuing with the intent of using the data to design a leachate migration control system for the landfill and to distinguish contaminants from an adjacent landfill.en_US
dc.subjectHydrology -- Arizona.en_US
dc.subjectWater resources development -- Arizona.en_US
dc.subjectHydrology -- Southwestern states.en_US
dc.subjectWater resources development -- Southwestern states.en_US
dc.identifier.issn0272-6106-
dc.identifier.urihttp://hdl.handle.net/10150/296095-
dc.identifier.journalHydrology and Water Resources in Arizona and the Southwesten_US
dc.typetexten_US
dc.typeProceedingsen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.