Persistent Link:
http://hdl.handle.net/10150/294044
Title:
Design of High Performance Amplifiers
Author:
Wan, Quan
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 01-May-2014
Abstract:
This dissertation presents circuit techniques for designing high performance amplifiers. In low power design, the range of common mode input signal shrinks due to reduced power supply voltage. In addition, due to reduced bias current, noise density rises. The reduced input signal range and raised noise floor severely degrade system dynamic range. A novel rail to rail input circuit is presented. The proposed circuit has advantages over conventional circuits in term of noise and power consumption. Moreover, due to reduced bias current, low power amplifiers typically have lower bandwidth and slew rate, which limits their dynamic performance. The bandwidth is further reduced at high gain settings because of the constant gain bandwidth product. A novel self-adaptive compensation technique to extend small signal bandwidth and improve slew behavior is presented. If an amplifier needs to drive various capacitive and/or resistive loads, parallel Miller compensation is the most power efficient frequency compensation scheme. However, the frequency response of parallel Miller compensation is complicated and no thorough analysis on frequency response has been given in literatures. To illustrate the connection between poles/zeros and each individual circuit component, we use a design oriented approach to derive transfer functions for various load conditions. With these transfer functions, circuit designers can optimize their design accordingly. As a case study, a low power precision instrumentation amplifier is designed. Compared to low power instrumentation amplifiers on the market or reported in literature, it can save at least 40% power, meanwhile offer higher bandwidth and faster slew rate at typical gain settings. Many challenges also exist in designing high voltage amplifiers. To achieve low cost and high performance, a novel topology of a high voltage current sensing amplifier is proposed. With this topology, major portion of amplifiers can be designed with low voltage, for instance, 5 V, devices, and only a limited amount of LDMOS are required to stand off high voltage. This topology does not have high noise gain as conventional solutions have. The same principle can be used for other high voltage amplifiers. A prototype chip is fabricated. The amplifier functions as expected. Test results are presented.
Type:
text; Electronic Dissertation
Keywords:
Frequency compensation; High voltage; Low power; Precision; Electrical & Computer Engineering; Amplifiers
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Electrical & Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Hariri, Salim A.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDesign of High Performance Amplifiersen_US
dc.creatorWan, Quanen_US
dc.contributor.authorWan, Quanen_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 01-May-2014en_US
dc.description.abstractThis dissertation presents circuit techniques for designing high performance amplifiers. In low power design, the range of common mode input signal shrinks due to reduced power supply voltage. In addition, due to reduced bias current, noise density rises. The reduced input signal range and raised noise floor severely degrade system dynamic range. A novel rail to rail input circuit is presented. The proposed circuit has advantages over conventional circuits in term of noise and power consumption. Moreover, due to reduced bias current, low power amplifiers typically have lower bandwidth and slew rate, which limits their dynamic performance. The bandwidth is further reduced at high gain settings because of the constant gain bandwidth product. A novel self-adaptive compensation technique to extend small signal bandwidth and improve slew behavior is presented. If an amplifier needs to drive various capacitive and/or resistive loads, parallel Miller compensation is the most power efficient frequency compensation scheme. However, the frequency response of parallel Miller compensation is complicated and no thorough analysis on frequency response has been given in literatures. To illustrate the connection between poles/zeros and each individual circuit component, we use a design oriented approach to derive transfer functions for various load conditions. With these transfer functions, circuit designers can optimize their design accordingly. As a case study, a low power precision instrumentation amplifier is designed. Compared to low power instrumentation amplifiers on the market or reported in literature, it can save at least 40% power, meanwhile offer higher bandwidth and faster slew rate at typical gain settings. Many challenges also exist in designing high voltage amplifiers. To achieve low cost and high performance, a novel topology of a high voltage current sensing amplifier is proposed. With this topology, major portion of amplifiers can be designed with low voltage, for instance, 5 V, devices, and only a limited amount of LDMOS are required to stand off high voltage. This topology does not have high noise gain as conventional solutions have. The same principle can be used for other high voltage amplifiers. A prototype chip is fabricated. The amplifier functions as expected. Test results are presented.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectFrequency compensationen_US
dc.subjectHigh voltageen_US
dc.subjectLow poweren_US
dc.subjectPrecisionen_US
dc.subjectElectrical & Computer Engineeringen_US
dc.subjectAmplifiersen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical & Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHariri, Salim A.en_US
dc.contributor.committeememberMarcellin, Michael W.en_US
dc.contributor.committeememberAkoglu, Alien_US
dc.contributor.committeememberHariri, Salim A.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.