Persistent Link:
http://hdl.handle.net/10150/294014
Title:
Astrophysical Tests of Gravity Beyond General Relativity
Author:
Cooney, Alan James
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The General theory of Relativity (GR) brought gravity into accord with the principles of locality and relativity. Since its discovery it has been preeminent, recognized as the most accurate description of gravity on the many scales where it has been tested. During this period, seemingly radical predictions like the existence of black holes and the expansion of the Universe have been verified and testify to the great leap of insight that GR represented in our understanding of space and time. However not all precision observations of astrophysical systems have yielded easily to interpretation within GR, and with the discovery of cosmic acceleration, there is genuine concern that General Relativity may be incomplete when describing the Universe on the largest sizes imaginable. In this uncertainty, many theoretical models have been proposed. In this thesis we shall first outline the motivation behind a certain subset of these models and the known issues that arise in interpreting these models as alternative theories of gravity. Then focus on one variety of theory the f(R) modifications to gravity. Demonstrating that many of the known instabilities have a common origin and that they are avoided when treating these theories via perturbative constraints. In the second part of this work we examine the astrophysical impact of modifications to gravity, first in the case of high mass neutron stars, then subsequently on corrections to the line profile of neutral hydrogen from violations of the equivalence principle. Finally we explore the phenomenology of modifications to gravity that produce late-Universe acceleration. In particular, what solutions are allowed and what range of accelerations are predicted as a result. Furthermore we explore how a correction to gravity at large scales would impact the growth and evolution of cosmological perturbations.
Type:
text; Electronic Dissertation
Keywords:
Gravity; Strong-Field; Physics; Cosmology
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Psaltis, Dimitrios

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAstrophysical Tests of Gravity Beyond General Relativityen_US
dc.creatorCooney, Alan Jamesen_US
dc.contributor.authorCooney, Alan Jamesen_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe General theory of Relativity (GR) brought gravity into accord with the principles of locality and relativity. Since its discovery it has been preeminent, recognized as the most accurate description of gravity on the many scales where it has been tested. During this period, seemingly radical predictions like the existence of black holes and the expansion of the Universe have been verified and testify to the great leap of insight that GR represented in our understanding of space and time. However not all precision observations of astrophysical systems have yielded easily to interpretation within GR, and with the discovery of cosmic acceleration, there is genuine concern that General Relativity may be incomplete when describing the Universe on the largest sizes imaginable. In this uncertainty, many theoretical models have been proposed. In this thesis we shall first outline the motivation behind a certain subset of these models and the known issues that arise in interpreting these models as alternative theories of gravity. Then focus on one variety of theory the f(R) modifications to gravity. Demonstrating that many of the known instabilities have a common origin and that they are avoided when treating these theories via perturbative constraints. In the second part of this work we examine the astrophysical impact of modifications to gravity, first in the case of high mass neutron stars, then subsequently on corrections to the line profile of neutral hydrogen from violations of the equivalence principle. Finally we explore the phenomenology of modifications to gravity that produce late-Universe acceleration. In particular, what solutions are allowed and what range of accelerations are predicted as a result. Furthermore we explore how a correction to gravity at large scales would impact the growth and evolution of cosmological perturbations.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectGravityen_US
dc.subjectStrong-Fielden_US
dc.subjectPhysicsen_US
dc.subjectCosmologyen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPsaltis, Dimitriosen_US
dc.contributor.committeememberOzel, Feryalen_US
dc.contributor.committeememberPinto, Philipen_US
dc.contributor.committeememberFlemming, Seanen_US
dc.contributor.committeememberZaritsky, Dennisen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.