Estimating Primary Fragment Size Distributions from Drill Hole Data

Persistent Link:
http://hdl.handle.net/10150/293750
Title:
Estimating Primary Fragment Size Distributions from Drill Hole Data
Author:
Annavarapu, Srikant
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 06-May-2014
Abstract:
The assessment of fragmentation is an important aspect of the design and planning of any excavation. The distribution of fragment sizes in situ helps assess the requirement of explosive energy to excavate the rock material. In addition, the information can also be used to evaluate the ground water flow, leaching characteristics and the requirement of additional rock handling equipment in construction projects. In the block cave mining method, the assessment of in situ and secondary fragmentation is an integral part of the design of the excavations at the extraction level and the selection of material handling systems for transporting the ore to the processing stations. Secondary blasting requirements can also be estimated based on the fragment size distributions developed for the block cave. Methods of estimating fragment size distributions in block cave mines have been based on joint set parameters estimated from structural mapping in available excavations or outcrops. While this is acceptable in the absence of any other means of assessing the fragmentation, the results can often be misleading since the structural mapping is often carried out in limited areas and the results applied uniformly to the entire deposit. This new study proposes to use the core piece lengths information gathered from the boreholes to develop in situ and primary fragmentation estimates for block cave operations. Under this proposed study, drill core piece lengths from an exploration program in Indonesia will be used along with structural mapping data to develop estimates for in situ and primary fragment size distributions. Methods for estimating secondary fragmentation from primary fragmentation will be evaluated and the estimates of secondary fragmentation from the different methods will be compared with the actual fragmentation characteristics observed at the drawpoints. The primary assumption in the development of primary fragment size distributions from drill core data is that each drill hole piece represents one in situ rock block. The relationships between the joint spacings and lengths of the different joint sets, evaluated from the joint set characteristics gathered from available excavations, outcrops or oriented core drilling programs, can be utilized for estimating the shape of the rock blocks.
Type:
text; Electronic Dissertation
Keywords:
drilling; fragmentation; Mining Geological & Geophysical Engineering; block caving
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Mining Geological & Geophysical Engineering
Degree Grantor:
University of Arizona
Advisor:
Dessureault, Sean D.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEstimating Primary Fragment Size Distributions from Drill Hole Dataen_US
dc.creatorAnnavarapu, Srikanten_US
dc.contributor.authorAnnavarapu, Srikanten_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 06-May-2014en_US
dc.description.abstractThe assessment of fragmentation is an important aspect of the design and planning of any excavation. The distribution of fragment sizes in situ helps assess the requirement of explosive energy to excavate the rock material. In addition, the information can also be used to evaluate the ground water flow, leaching characteristics and the requirement of additional rock handling equipment in construction projects. In the block cave mining method, the assessment of in situ and secondary fragmentation is an integral part of the design of the excavations at the extraction level and the selection of material handling systems for transporting the ore to the processing stations. Secondary blasting requirements can also be estimated based on the fragment size distributions developed for the block cave. Methods of estimating fragment size distributions in block cave mines have been based on joint set parameters estimated from structural mapping in available excavations or outcrops. While this is acceptable in the absence of any other means of assessing the fragmentation, the results can often be misleading since the structural mapping is often carried out in limited areas and the results applied uniformly to the entire deposit. This new study proposes to use the core piece lengths information gathered from the boreholes to develop in situ and primary fragmentation estimates for block cave operations. Under this proposed study, drill core piece lengths from an exploration program in Indonesia will be used along with structural mapping data to develop estimates for in situ and primary fragment size distributions. Methods for estimating secondary fragmentation from primary fragmentation will be evaluated and the estimates of secondary fragmentation from the different methods will be compared with the actual fragmentation characteristics observed at the drawpoints. The primary assumption in the development of primary fragment size distributions from drill core data is that each drill hole piece represents one in situ rock block. The relationships between the joint spacings and lengths of the different joint sets, evaluated from the joint set characteristics gathered from available excavations, outcrops or oriented core drilling programs, can be utilized for estimating the shape of the rock blocks.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectdrillingen_US
dc.subjectfragmentationen_US
dc.subjectMining Geological & Geophysical Engineeringen_US
dc.subjectblock cavingen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMining Geological & Geophysical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDessureault, Sean D.en_US
dc.contributor.committeememberKemeny, John M.en_US
dc.contributor.committeememberSon, Young Jonen_US
dc.contributor.committeememberDessureault, Sean D.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.