Persistent Link:
http://hdl.handle.net/10150/293486
Title:
Therapeutic Potential of EGFR Derived Peptides in Breast Cancer
Author:
Su, Hsin-Yuan
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 15-Oct-2013
Abstract:
The epidermal growth factor receptor (EGFR) belongs to the erbB family of receptor tyrosine kinases which consists of four members (EGFR, ErbB2, ErbB3 and ErbB4). Upon ligand binding, the EGFR is capable of dimerization with other erbB receptors and propagates signals regulating a diverse array of cellular physiologies, including cell growth, migration and survival. Dysregulation of the EGFR is important for development and progression of different types of cancers, including breast cancer. Breast cancer is the second leading cause of cancer death in women. EGFR overexpression has been observed in about 15% of all breast cancers. Moreover, in triple negative breast cancer (TNBC), which is a more aggressive type of breast cancer and lacks effective therapies, up to 50% of tumors are found to overexpress EGFR. Targeted therapy against EGFR has been used in TNBC. However, limited efficacy has been observed in TNBC due to intrinsic and acquired resistant mechanisms. In order to overcome this issue, we have developed two novel therapeutic peptides derived from the nuclear localization signal (NLS) sequence and juxtamembrane domain of EGFR and investigated their efficacy in regard to inhibiting EGFR translocation and activation in TNBC. EGFR has been found to translocate into the nucleus and nuclear EGFR can affect gene transcription, cell proliferation, stress response and DNA repair through interacting with different components in the nucleus. Importantly, these functions of nuclear EGFR correlate with cancer prognosis and therapeutic resistance. We found that an EGFR NLS-derived peptide (ENLS peptide) could inhibit activated EGFR (pY845) undergoing nuclear translocation. We also showed that this ENLS peptide sensitized breast cancer cells to AG1478 (EGFR tyrosine kinase inhibitor) treatment. The juxtamembrane domain of EGFR regulates its trafficking to the nucleus and mitochondria, interaction with calmodulin and calcium signaling, and participates in dimerization and activation of EGFR. These non-traditional kinase related functions of EGFR represent a novel target for EGFR therapy. We found that a mimetic peptide of the juxtamembrane domain of EGFR (EJ1 peptide) could effectively inhibit EGFR activation through promoting inactive dimer formation. It could also effectively kill cancer cells through processes of apoptosis and necrosis. Mechanistically, this EJ1 peptide affects membrane integrity thereby leading to calcium influx, disruption of mitochondrial membrane potential and reactive oxygen species (ROS) accumulation. Importantly, EJ1 peptide appeared to be effective in inhibition of tumor growth and metastasis in a transgenic mouse model of breast cancer and showed no observable toxicity. ErbB3, another member of the erbB family, represents an important driver of the parallel signaling pathway to EGFR as well as a key regulator of PI3K/AKT activity which is important for therapeutic resistance. ErbB3 has been shown to interact with MUC1. The interaction between MUC1 and EGFR promotes EGFR stability through recycling of receptors. We found that MUC1 expression also affected ErbB3 activity and stability through ErbB3/EGFR/MUC1 complex formation. In conclusion, we demonstrated that two EGFR-derived peptides, working through novel strategies, represent a new foundation of effective therapeutic agents to breast cancer. ErbB3/EGFR/MUC1 complex formation under MUC1 expression also represents a druggable target for ErbB3 activity and stability.
Type:
text; Electronic Dissertation
Keywords:
EGFR; juxtamembrane domain; MUC1; nuclear EGFR; peptide; Cancer Biology; breast cancer
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Cancer Biology
Degree Grantor:
University of Arizona
Advisor:
Schroeder, Joyce A.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTherapeutic Potential of EGFR Derived Peptides in Breast Canceren_US
dc.creatorSu, Hsin-Yuanen_US
dc.contributor.authorSu, Hsin-Yuanen_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 15-Oct-2013en_US
dc.description.abstractThe epidermal growth factor receptor (EGFR) belongs to the erbB family of receptor tyrosine kinases which consists of four members (EGFR, ErbB2, ErbB3 and ErbB4). Upon ligand binding, the EGFR is capable of dimerization with other erbB receptors and propagates signals regulating a diverse array of cellular physiologies, including cell growth, migration and survival. Dysregulation of the EGFR is important for development and progression of different types of cancers, including breast cancer. Breast cancer is the second leading cause of cancer death in women. EGFR overexpression has been observed in about 15% of all breast cancers. Moreover, in triple negative breast cancer (TNBC), which is a more aggressive type of breast cancer and lacks effective therapies, up to 50% of tumors are found to overexpress EGFR. Targeted therapy against EGFR has been used in TNBC. However, limited efficacy has been observed in TNBC due to intrinsic and acquired resistant mechanisms. In order to overcome this issue, we have developed two novel therapeutic peptides derived from the nuclear localization signal (NLS) sequence and juxtamembrane domain of EGFR and investigated their efficacy in regard to inhibiting EGFR translocation and activation in TNBC. EGFR has been found to translocate into the nucleus and nuclear EGFR can affect gene transcription, cell proliferation, stress response and DNA repair through interacting with different components in the nucleus. Importantly, these functions of nuclear EGFR correlate with cancer prognosis and therapeutic resistance. We found that an EGFR NLS-derived peptide (ENLS peptide) could inhibit activated EGFR (pY845) undergoing nuclear translocation. We also showed that this ENLS peptide sensitized breast cancer cells to AG1478 (EGFR tyrosine kinase inhibitor) treatment. The juxtamembrane domain of EGFR regulates its trafficking to the nucleus and mitochondria, interaction with calmodulin and calcium signaling, and participates in dimerization and activation of EGFR. These non-traditional kinase related functions of EGFR represent a novel target for EGFR therapy. We found that a mimetic peptide of the juxtamembrane domain of EGFR (EJ1 peptide) could effectively inhibit EGFR activation through promoting inactive dimer formation. It could also effectively kill cancer cells through processes of apoptosis and necrosis. Mechanistically, this EJ1 peptide affects membrane integrity thereby leading to calcium influx, disruption of mitochondrial membrane potential and reactive oxygen species (ROS) accumulation. Importantly, EJ1 peptide appeared to be effective in inhibition of tumor growth and metastasis in a transgenic mouse model of breast cancer and showed no observable toxicity. ErbB3, another member of the erbB family, represents an important driver of the parallel signaling pathway to EGFR as well as a key regulator of PI3K/AKT activity which is important for therapeutic resistance. ErbB3 has been shown to interact with MUC1. The interaction between MUC1 and EGFR promotes EGFR stability through recycling of receptors. We found that MUC1 expression also affected ErbB3 activity and stability through ErbB3/EGFR/MUC1 complex formation. In conclusion, we demonstrated that two EGFR-derived peptides, working through novel strategies, represent a new foundation of effective therapeutic agents to breast cancer. ErbB3/EGFR/MUC1 complex formation under MUC1 expression also represents a druggable target for ErbB3 activity and stability.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectEGFRen_US
dc.subjectjuxtamembrane domainen_US
dc.subjectMUC1en_US
dc.subjectnuclear EGFRen_US
dc.subjectpeptideen_US
dc.subjectCancer Biologyen_US
dc.subjectbreast canceren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineCancer Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSchroeder, Joyce A.en_US
dc.contributor.committeememberCamenisch, Todd D.en_US
dc.contributor.committeememberMartinez, Jesse D.en_US
dc.contributor.committeememberMeuillet, Emmanuelle J.en_US
dc.contributor.committeememberSchroeder, Joyce A.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.