Application of Stable Isotopes and Geochemical Analysis to Characterize Sulfate, Nitrate, and Trace Element Contamination of Groundwater and Its Remediation at a Former Uranium Mining Site

Persistent Link:
http://hdl.handle.net/10150/293389
Title:
Application of Stable Isotopes and Geochemical Analysis to Characterize Sulfate, Nitrate, and Trace Element Contamination of Groundwater and Its Remediation at a Former Uranium Mining Site
Author:
Miao, Ziheng
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Sulfate, nitrate, and certain trace elements are common groundwater contaminants observed at mining sites. Their source, fate, and remediation were investigated at a former uranium mining site. First, groundwater samples collected across the site were analyzed for geochemistry, stable isotopes, and trace elements. Then, two pilot-scale ethanol injection tests were conducted for biostimulation of nitrate and sulfate reduction. Groundwater was monitored in the test area before and after the tests. The results showed a mixing of two discrete sources of sulfate. Quantification of these two sources using two methods showed that sulfide-mineral oxidation of the mine tailings served as a steady but low-discharge source while sulfuric acid (applied during ore processing in the 1960s) served as a variable, strong source. It appears that sulfuric acid served as a sustained source of sulfate for approximately 40 years. This source may be from accumulation of sulfate salts (formed from sulfuric acid) in the source zone due to the arid climate of the site. Results showing correspondence of isotopic compositions of ammonium and nitrate confirmed the generation of nitrate via nitrification. Moreover, it was observed that ammonium concentration is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. As for the biostimulation, sulfate reduction condition has been maintained for a period of approximately 3 years after a single input. Atypical fractionation behavior of the delta34S in sulfate was hypothesized to be caused by release of sulfate from sulfate minerals associated with the sediments. Elevated hydrogen sulfide concentrations were not observed until approximately four months after the start of the test. This behavior, in concert with the observed changes in aqueous iron and manganese species, suggests that hydrogen sulfide produced from sulfate reduction was precipitated, presumably in the form of iron sulfides, until the exhaustion of readily reducible iron oxides. Hydrogen sulfide produced thereafter appears to have been in part re-oxidized.
Type:
text; Electronic Dissertation
Keywords:
mining; nitrate; stable isotopes; sulfate; trace elements; Hydrology; groundwater
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Hydrology
Degree Grantor:
University of Arizona
Advisor:
Brusseau, Mark L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleApplication of Stable Isotopes and Geochemical Analysis to Characterize Sulfate, Nitrate, and Trace Element Contamination of Groundwater and Its Remediation at a Former Uranium Mining Siteen_US
dc.creatorMiao, Zihengen_US
dc.contributor.authorMiao, Zihengen_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractSulfate, nitrate, and certain trace elements are common groundwater contaminants observed at mining sites. Their source, fate, and remediation were investigated at a former uranium mining site. First, groundwater samples collected across the site were analyzed for geochemistry, stable isotopes, and trace elements. Then, two pilot-scale ethanol injection tests were conducted for biostimulation of nitrate and sulfate reduction. Groundwater was monitored in the test area before and after the tests. The results showed a mixing of two discrete sources of sulfate. Quantification of these two sources using two methods showed that sulfide-mineral oxidation of the mine tailings served as a steady but low-discharge source while sulfuric acid (applied during ore processing in the 1960s) served as a variable, strong source. It appears that sulfuric acid served as a sustained source of sulfate for approximately 40 years. This source may be from accumulation of sulfate salts (formed from sulfuric acid) in the source zone due to the arid climate of the site. Results showing correspondence of isotopic compositions of ammonium and nitrate confirmed the generation of nitrate via nitrification. Moreover, it was observed that ammonium concentration is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium-nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. As for the biostimulation, sulfate reduction condition has been maintained for a period of approximately 3 years after a single input. Atypical fractionation behavior of the delta34S in sulfate was hypothesized to be caused by release of sulfate from sulfate minerals associated with the sediments. Elevated hydrogen sulfide concentrations were not observed until approximately four months after the start of the test. This behavior, in concert with the observed changes in aqueous iron and manganese species, suggests that hydrogen sulfide produced from sulfate reduction was precipitated, presumably in the form of iron sulfides, until the exhaustion of readily reducible iron oxides. Hydrogen sulfide produced thereafter appears to have been in part re-oxidized.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectminingen_US
dc.subjectnitrateen_US
dc.subjectstable isotopesen_US
dc.subjectsulfateen_US
dc.subjecttrace elementsen_US
dc.subjectHydrologyen_US
dc.subjectgroundwateren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBrusseau, Mark L.en_US
dc.contributor.committeememberMeixner, Thomasen_US
dc.contributor.committeememberMcIntosh, Jennifer C.en_US
dc.contributor.committeememberBrusseau, Mark L.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.