Persistent Link:
http://hdl.handle.net/10150/291948
Title:
Curvature sensing for Adaptive Optics: A computer simulation
Author:
Roddier, Nicolas, 1965-
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This thesis describes computer simulations of a new wavefront sensing technique for Adaptive Optics based on local wavefront curvature measurements, along with edge slope measurements. The output signal from the curvature measurements, along with edge slope measurements. The output signal from the curvature sensor can be directly applied to the electrodes of a bimorph or membrane mirror. The mirror is used as an analog device to solve the Poisson Equation, providing a fast real time compensation for atmospheric disturbances. The open loop characteristics of the system are presented. The ideal response is analyzed, and side effects such as non-linearity, photon and diffraction noises are discussed. Closed loop simulations are presented thereafter. A seven actuator system showed a few unstable modes. A 13 actuator system with proper filtering corrects the atmospheric perturbations. To simulate atmospheric distorted wavefronts, an algorithm based on spectral decomposition of the Zernike covariance matrix was derived. This sensor can also be used to test large telescope mirrors using a modified program that solves the Poisson Equation with Neumann boundary conditions.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Data transmission systems.; Optics, Adaptive.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Electrical and Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Cellier, Francois

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleCurvature sensing for Adaptive Optics: A computer simulationen_US
dc.creatorRoddier, Nicolas, 1965-en_US
dc.contributor.authorRoddier, Nicolas, 1965-en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis thesis describes computer simulations of a new wavefront sensing technique for Adaptive Optics based on local wavefront curvature measurements, along with edge slope measurements. The output signal from the curvature measurements, along with edge slope measurements. The output signal from the curvature sensor can be directly applied to the electrodes of a bimorph or membrane mirror. The mirror is used as an analog device to solve the Poisson Equation, providing a fast real time compensation for atmospheric disturbances. The open loop characteristics of the system are presented. The ideal response is analyzed, and side effects such as non-linearity, photon and diffraction noises are discussed. Closed loop simulations are presented thereafter. A seven actuator system showed a few unstable modes. A 13 actuator system with proper filtering corrects the atmospheric perturbations. To simulate atmospheric distorted wavefronts, an algorithm based on spectral decomposition of the Zernike covariance matrix was derived. This sensor can also be used to test large telescope mirrors using a modified program that solves the Poisson Equation with Neumann boundary conditions.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectData transmission systems.en_US
dc.subjectOptics, Adaptive.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCellier, Francoisen_US
dc.identifier.proquest1339227en_US
dc.identifier.oclc23665728en_US
dc.identifier.bibrecord.b17655730en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.