Persistent Link:
http://hdl.handle.net/10150/291653
Title:
Carbohydrate metabolism in pot chrysanthemum
Author:
Trusty, Susan Eble, 1957-
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Studies were performed to determine the concentration of soluble carbohydrates and starch in chrysanthemum plants at various stages of vegetative and floral development. Leaves of pot chrysanthemum (Chrysanthemum morifolium 'Charm' or 'Favor') grown under full irradiance had more soluble carbohydrates and starch than those grown with 65% irradiance reduction. Both showed clear diurnal variation in carbohydrate concentrations. Inflorescences exhibited no diurnal fluctuations in total soluble carbohydrate (TSC). Sucrose was the only translocated carbohydrate in chrysanthemums in quantities detectable by HPLC. In a postproduction environment, leaf and stem TSC remained relatively unchanged while inflorescence TSC decreased significantly. Reducing sugars (glucose + fructose) accounted for up to 84% of the inflorescence TSC. Relative levels of starch and fructans over time suggests an alternate use of fructans and starch as pools of available reserve carbohydrate during floral development. Fructans were shown to decrease in polymerization in both petals and inflorescences as petals expanded.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Agriculture, Plant Culture.; Biology, Plant Physiology.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Plant Sciences
Degree Grantor:
University of Arizona
Advisor:
Miller, William B.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleCarbohydrate metabolism in pot chrysanthemumen_US
dc.creatorTrusty, Susan Eble, 1957-en_US
dc.contributor.authorTrusty, Susan Eble, 1957-en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractStudies were performed to determine the concentration of soluble carbohydrates and starch in chrysanthemum plants at various stages of vegetative and floral development. Leaves of pot chrysanthemum (Chrysanthemum morifolium 'Charm' or 'Favor') grown under full irradiance had more soluble carbohydrates and starch than those grown with 65% irradiance reduction. Both showed clear diurnal variation in carbohydrate concentrations. Inflorescences exhibited no diurnal fluctuations in total soluble carbohydrate (TSC). Sucrose was the only translocated carbohydrate in chrysanthemums in quantities detectable by HPLC. In a postproduction environment, leaf and stem TSC remained relatively unchanged while inflorescence TSC decreased significantly. Reducing sugars (glucose + fructose) accounted for up to 84% of the inflorescence TSC. Relative levels of starch and fructans over time suggests an alternate use of fructans and starch as pools of available reserve carbohydrate during floral development. Fructans were shown to decrease in polymerization in both petals and inflorescences as petals expanded.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectAgriculture, Plant Culture.en_US
dc.subjectBiology, Plant Physiology.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMiller, William B.en_US
dc.identifier.proquest1342990en_US
dc.identifier.bibrecord.b26623614en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.