Persistent Link:
http://hdl.handle.net/10150/291470
Title:
ESD-induced noncatastrophic damage in power MOSFETs
Author:
Zupac, Dragan, 1961-
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Electrostatic discharge (ESD) may, depending on the energy of the pulse, cause either catastrophic failures or degradation of MOSFETs. Effects of noncatastrophic positive Human-Body Model (HBM) ESD stress at the gate of power MOSFETs are investigated in this work. Noncatastrophic damage is manifested in the form of positive charge trapping in the gate oxide. In p-channel devices used in this study, the charge injection and trapping occur predominantly in the gate oxide areas lying above the p-body region. In p-channel devices used, the charge is injected mainly from the p-drain region. Based on the polarity of the pulse and the regions observed to contribute to charge injection, a model of ESD-induced charge injection from the silicon into the oxide is proposed. Finally, the effects of noncatastrophic ESD events on the radiation response of n-channel power MOSFETs are reported.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Electrical and Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Galloway, Kenneth F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleESD-induced noncatastrophic damage in power MOSFETsen_US
dc.creatorZupac, Dragan, 1961-en_US
dc.contributor.authorZupac, Dragan, 1961-en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractElectrostatic discharge (ESD) may, depending on the energy of the pulse, cause either catastrophic failures or degradation of MOSFETs. Effects of noncatastrophic positive Human-Body Model (HBM) ESD stress at the gate of power MOSFETs are investigated in this work. Noncatastrophic damage is manifested in the form of positive charge trapping in the gate oxide. In p-channel devices used in this study, the charge injection and trapping occur predominantly in the gate oxide areas lying above the p-body region. In p-channel devices used, the charge is injected mainly from the p-drain region. Based on the polarity of the pulse and the regions observed to contribute to charge injection, a model of ESD-induced charge injection from the silicon into the oxide is proposed. Finally, the effects of noncatastrophic ESD events on the radiation response of n-channel power MOSFETs are reported.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGalloway, Kenneth F.en_US
dc.identifier.proquest1342998en_US
dc.identifier.bibrecord.b26624059en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.