Persistent Link:
http://hdl.handle.net/10150/291344
Title:
Extrinsic silicon detector characterization
Author:
Garcia, John Phillips, 1956-
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A gallium doped extrinsic silicon (Si:Ga) photoconductive detector was tested for sensitivity and quickness of response. The developmental goal for this detector material was high speed operation without compromised detectivity (D*). The high speed, p-type infrared photoconductor, with photoconductive gain less than unity, was tested at 10.5 μm to determine an experimental value for the detectivity-bandwidth product of D*f* = 3.8 x 10¹⁸ cm-Hz³/²/W. Subsequently a theoretical model taking into account the optical absorption profile and majority carrier transport processes within the detector was developed which agreed with the experimental data.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Physics, Condensed Matter.; Physics, Optics.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Dereniak, Eustace L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleExtrinsic silicon detector characterizationen_US
dc.creatorGarcia, John Phillips, 1956-en_US
dc.contributor.authorGarcia, John Phillips, 1956-en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA gallium doped extrinsic silicon (Si:Ga) photoconductive detector was tested for sensitivity and quickness of response. The developmental goal for this detector material was high speed operation without compromised detectivity (D*). The high speed, p-type infrared photoconductor, with photoconductive gain less than unity, was tested at 10.5 μm to determine an experimental value for the detectivity-bandwidth product of D*f* = 3.8 x 10¹⁸ cm-Hz³/²/W. Subsequently a theoretical model taking into account the optical absorption profile and majority carrier transport processes within the detector was developed which agreed with the experimental data.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectPhysics, Condensed Matter.en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDereniak, Eustace L.en_US
dc.identifier.proquest1342469en_US
dc.identifier.bibrecord.b26541063en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.