Persistent Link:
http://hdl.handle.net/10150/290581
Title:
Pyrrolizidine alkaloids: Chemical basis of toxicity
Author:
Cooper, Roland Arthur, 1963-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In humans, livestock and experimental animals, pyrrolizidine alkaloids (PAs) are toxic as a consequence of their hepatic metabolism to reactive pyrrolic esters, or dehydroalkaloids (DHAs). Despite their similarity in structures, PAs often vary markedly in their lethality (LD₅₀s) and in the organs in which toxicity is expressed. We have examined whether there are differences in the physicochemical properties of certain DHAs which are associated with differences in patterns of metabolism and toxicity produced by the parent PA. Using a potentiometric method to measure hydrolysis, it was determined that the half-lives of the corresponding DHAs of retrorsine, seneciphylline, monocrotaline and trichodesmine were 1.06, 1.60, 3.39 and 5.36 sec, respectively. These values were supported by similar results from experiments measuring reactivity of DHAs toward 4-(p-nitrobenzyl)pyridine. Studies from the isolated rat liver perfused with PAs show that DHA stability is related to patterns of metabolism and toxicity. Perfusion of the primarily hepatotoxic retrorsine and seneciphylline is associated with a greater proportion of metabolite released as non-toxic 7-glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GSDHP), a greater proportion alkylating liver macromolecules, and a lower proportion released as DHA into the circulation. Perfusion with monocrotaline and trichodesmine, PAs producing extrahepatic toxicity, produced lower proportions of 7-GSDHP release and liver alkylation, and higher proportions of DHA released into the circulation. Other studies characterizing DHAs included the use of an in vitro enzyme assay in which DHAs were shown to inhibit the phosphotransferase activity of yeast and rat brain hexokinase. Parent PAs, and the hydrolysis product of DHAs, (±)-6,7dihydro-1-hydroxymethyl-5H-pyrrolizine (DHP) did not affect enzyme activity. In vivo studies in rats have established that glutathione and cysteine-conjugated pyrrolic metabolites of PAs likely represent detoxication pathways, providing further support for DHAs as the primary toxic metabolite. We have examined the chemical form of sulfur-bound pyrroles to establish the importance of the 7-ester position in PA toxicity. Additionally, we have developed an efficient technique for the rapid separation and purification of large quantities of PAs using high-speed counter-current chromatography.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Health Sciences, Toxicology.; Biology, Animal Physiology.; Chemistry, Biochemistry.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Pharmacology and Toxicology
Degree Grantor:
University of Arizona
Advisor:
Huxtable, Ryan J.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titlePyrrolizidine alkaloids: Chemical basis of toxicityen_US
dc.creatorCooper, Roland Arthur, 1963-en_US
dc.contributor.authorCooper, Roland Arthur, 1963-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn humans, livestock and experimental animals, pyrrolizidine alkaloids (PAs) are toxic as a consequence of their hepatic metabolism to reactive pyrrolic esters, or dehydroalkaloids (DHAs). Despite their similarity in structures, PAs often vary markedly in their lethality (LD₅₀s) and in the organs in which toxicity is expressed. We have examined whether there are differences in the physicochemical properties of certain DHAs which are associated with differences in patterns of metabolism and toxicity produced by the parent PA. Using a potentiometric method to measure hydrolysis, it was determined that the half-lives of the corresponding DHAs of retrorsine, seneciphylline, monocrotaline and trichodesmine were 1.06, 1.60, 3.39 and 5.36 sec, respectively. These values were supported by similar results from experiments measuring reactivity of DHAs toward 4-(p-nitrobenzyl)pyridine. Studies from the isolated rat liver perfused with PAs show that DHA stability is related to patterns of metabolism and toxicity. Perfusion of the primarily hepatotoxic retrorsine and seneciphylline is associated with a greater proportion of metabolite released as non-toxic 7-glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GSDHP), a greater proportion alkylating liver macromolecules, and a lower proportion released as DHA into the circulation. Perfusion with monocrotaline and trichodesmine, PAs producing extrahepatic toxicity, produced lower proportions of 7-GSDHP release and liver alkylation, and higher proportions of DHA released into the circulation. Other studies characterizing DHAs included the use of an in vitro enzyme assay in which DHAs were shown to inhibit the phosphotransferase activity of yeast and rat brain hexokinase. Parent PAs, and the hydrolysis product of DHAs, (±)-6,7dihydro-1-hydroxymethyl-5H-pyrrolizine (DHP) did not affect enzyme activity. In vivo studies in rats have established that glutathione and cysteine-conjugated pyrrolic metabolites of PAs likely represent detoxication pathways, providing further support for DHAs as the primary toxic metabolite. We have examined the chemical form of sulfur-bound pyrroles to establish the importance of the 7-ester position in PA toxicity. Additionally, we have developed an efficient technique for the rapid separation and purification of large quantities of PAs using high-speed counter-current chromatography.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHealth Sciences, Toxicology.en_US
dc.subjectBiology, Animal Physiology.en_US
dc.subjectChemistry, Biochemistry.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePharmacology and Toxicologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHuxtable, Ryan J.en_US
dc.identifier.proquest9706164en_US
dc.identifier.bibrecord.b3428798xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.