The influence of stoichiometry on the properties of titanium oxide films for optical coatings

Persistent Link:
http://hdl.handle.net/10150/290580
Title:
The influence of stoichiometry on the properties of titanium oxide films for optical coatings
Author:
Chiao, Shu-Chung, 1958-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This study investigates various properties of titanium oxide thin films. The samples are prepared by electron-beam evaporation of the Ti₂O₃ material in an oxygen environment. Papers about the vaporization study of the titanium-oxygen system are reviewed; special attention is paid to the congruent vaporization in the titanium-oxygen system. The occurrence of congruent vaporization in our coating system is discussed. The compositions of the films are identified by Rutherford Backscattering Spectrometry. The effect of water vapor and the substrate temperature on the oxygen contents in RBS measurements is discussed. The optical properties of the samples are measured. With the spectrophotometric measurements, the methods for deriving the optical constants of transparent and opaque films are developed. The absorption of the TiO₂ film is investigated, and the corresponding mechanisms are discussed. The envelope method is employed to find the optical band gap of the TiO₂ film. The electrical resistivity of the titanium oxide films are measured with the four-point probe method, and the phenomenon of metal to insulator transition is demonstrated. The tensile stresses in our titanium oxide films are examined with a Nomarski microscope. The grain boundary model is adopted to explain the influence of thickness and oxygen content on the stresses development in thin film. Molecular dynamics simulation is used to study the structure and the thermal expansion of titanium dioxide rutile.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Optics.; Engineering, Materials Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Macleod, H. Angus

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleThe influence of stoichiometry on the properties of titanium oxide films for optical coatingsen_US
dc.creatorChiao, Shu-Chung, 1958-en_US
dc.contributor.authorChiao, Shu-Chung, 1958-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis study investigates various properties of titanium oxide thin films. The samples are prepared by electron-beam evaporation of the Ti₂O₃ material in an oxygen environment. Papers about the vaporization study of the titanium-oxygen system are reviewed; special attention is paid to the congruent vaporization in the titanium-oxygen system. The occurrence of congruent vaporization in our coating system is discussed. The compositions of the films are identified by Rutherford Backscattering Spectrometry. The effect of water vapor and the substrate temperature on the oxygen contents in RBS measurements is discussed. The optical properties of the samples are measured. With the spectrophotometric measurements, the methods for deriving the optical constants of transparent and opaque films are developed. The absorption of the TiO₂ film is investigated, and the corresponding mechanisms are discussed. The envelope method is employed to find the optical band gap of the TiO₂ film. The electrical resistivity of the titanium oxide films are measured with the four-point probe method, and the phenomenon of metal to insulator transition is demonstrated. The tensile stresses in our titanium oxide films are examined with a Nomarski microscope. The grain boundary model is adopted to explain the influence of thickness and oxygen content on the stresses development in thin film. Molecular dynamics simulation is used to study the structure and the thermal expansion of titanium dioxide rutile.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Optics.en_US
dc.subjectEngineering, Materials Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMacleod, H. Angusen_US
dc.identifier.proquest9706161en_US
dc.identifier.bibrecord.b34277973en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.