A canopy model for the study of bidirectional reflectance factors in vegetation stands

Persistent Link:
http://hdl.handle.net/10150/290345
Title:
A canopy model for the study of bidirectional reflectance factors in vegetation stands
Author:
Keita, Fricky
Issue Date:
2001
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A radiative transfer model for a homogeneous plane parallel vegetative canopy is developed. A method to decompose and calculate the uncollided, once scattered, and multiply scattered radiation components is also presented based on the turbid medium approach. The new model accounts for the some effects exhibited only by homogenous vegetation canopies. This allows the simulation of the scattering processes within the plant canopy as a function of the traditional canopy architecture parameters such as leaf area index (LAI), leaf reflectance and transmittance, and also the canopy height and leaf size, stem etc... This model integrates two different approaches: the turbid medium approach and an approach that takes into account the finite size of the leaves. Furthermore, a state of the art leaf radiation transfer model (PROSPECT) is incorporated into the new model that provides leaf scattering properties as inputs (transmittance and reflectance vs. wavelength). Based on the proposed canopy model, a computer code in MATLAB was formulated using the discrete ordinates numerical method. This was used to calculate the bi-directional reflectance factor for a given geometry and a viewing angle from a plant canopy. The code for the new model is modular and very simple to use. The new model has been validated against other radiative transfer models, and compared with measured data. The results obtained using the model are in good agreement with the measured data.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Agricultural.; Remote Sensing.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Agricultural and Biosystems Engineering
Degree Grantor:
University of Arizona
Advisor:
Yitayew, Muluneh

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleA canopy model for the study of bidirectional reflectance factors in vegetation standsen_US
dc.creatorKeita, Frickyen_US
dc.contributor.authorKeita, Frickyen_US
dc.date.issued2001en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA radiative transfer model for a homogeneous plane parallel vegetative canopy is developed. A method to decompose and calculate the uncollided, once scattered, and multiply scattered radiation components is also presented based on the turbid medium approach. The new model accounts for the some effects exhibited only by homogenous vegetation canopies. This allows the simulation of the scattering processes within the plant canopy as a function of the traditional canopy architecture parameters such as leaf area index (LAI), leaf reflectance and transmittance, and also the canopy height and leaf size, stem etc... This model integrates two different approaches: the turbid medium approach and an approach that takes into account the finite size of the leaves. Furthermore, a state of the art leaf radiation transfer model (PROSPECT) is incorporated into the new model that provides leaf scattering properties as inputs (transmittance and reflectance vs. wavelength). Based on the proposed canopy model, a computer code in MATLAB was formulated using the discrete ordinates numerical method. This was used to calculate the bi-directional reflectance factor for a given geometry and a viewing angle from a plant canopy. The code for the new model is modular and very simple to use. The new model has been validated against other radiative transfer models, and compared with measured data. The results obtained using the model are in good agreement with the measured data.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Agricultural.en_US
dc.subjectRemote Sensing.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAgricultural and Biosystems Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorYitayew, Mulunehen_US
dc.identifier.proquest3016509en_US
dc.identifier.bibrecord.b41941494en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.