Persistent Link:
http://hdl.handle.net/10150/290013
Title:
Boron isotopes as intrinsic and artificial hydrologic tracers
Author:
Quast, Konrad William
Issue Date:
2003
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This work investigates the conservative behavior of boron isotopes and their potential use as an artificial hydrologic tracer. The usefulness of boron isotopes as intrinsic hydrologic tracers and the assumption that boron isotopes are conservative in many natural environments led to the hypothesis that they can be easily adapted as artificial hydrologic tracers. The results are demonstrated in three field studies and a laboratory study carried out under the Soil Aquifer Treatment project. Non-conservative behavior of intrinsic boron isotope ratios was found in vadose zone and groundwater samples. Although this behavior was recognized, its overall importance is relatively small when compared to the range of values found in the vicinity of the field site that ranged from 0 to 39‰. Fractionation of boron isotopes from its source value, domestic effluent with a range of 0 to 6‰; and an average of 3‰, is on the order of 2‰ and is confirmed by a laboratory study. The fractionation is in part related to the humic acid found in organic matter collected from recharge basin surface soils. Boron isotopes, specifically boric acid enriched in 10B, were successfully applied as an artificial tracer. Xenon and oxygen/hydrogen isotopes, and sulfate support interpretation of boron tracer results. However, non-conservative behavior of boron isotopes is also identified in this artificial tracer study. The non-conservative behavior is demonstrated by the late breakthrough of the boron isotope tracer, two days later, relative to that of xenon isotopes added by researchers from Lawrence Livermore Laboratory.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Hydrology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Hydrology and Water Resources
Degree Grantor:
University of Arizona
Advisor:
Lansey, Kevin

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleBoron isotopes as intrinsic and artificial hydrologic tracersen_US
dc.creatorQuast, Konrad Williamen_US
dc.contributor.authorQuast, Konrad Williamen_US
dc.date.issued2003en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis work investigates the conservative behavior of boron isotopes and their potential use as an artificial hydrologic tracer. The usefulness of boron isotopes as intrinsic hydrologic tracers and the assumption that boron isotopes are conservative in many natural environments led to the hypothesis that they can be easily adapted as artificial hydrologic tracers. The results are demonstrated in three field studies and a laboratory study carried out under the Soil Aquifer Treatment project. Non-conservative behavior of intrinsic boron isotope ratios was found in vadose zone and groundwater samples. Although this behavior was recognized, its overall importance is relatively small when compared to the range of values found in the vicinity of the field site that ranged from 0 to 39‰. Fractionation of boron isotopes from its source value, domestic effluent with a range of 0 to 6‰; and an average of 3‰, is on the order of 2‰ and is confirmed by a laboratory study. The fractionation is in part related to the humic acid found in organic matter collected from recharge basin surface soils. Boron isotopes, specifically boric acid enriched in 10B, were successfully applied as an artificial tracer. Xenon and oxygen/hydrogen isotopes, and sulfate support interpretation of boron tracer results. However, non-conservative behavior of boron isotopes is also identified in this artificial tracer study. The non-conservative behavior is demonstrated by the late breakthrough of the boron isotope tracer, two days later, relative to that of xenon isotopes added by researchers from Lawrence Livermore Laboratory.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHydrology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLansey, Kevinen_US
dc.identifier.proquest3119977en_US
dc.identifier.bibrecord.b45645723en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.