A high-order immersed boundary method for unsteady incompressible flow calculations

Persistent Link:
http://hdl.handle.net/10150/290009
Title:
A high-order immersed boundary method for unsteady incompressible flow calculations
Author:
Linnick, Mark Nicholas
Issue Date:
2003
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A high-order immersed boundary method (IBM) for the computation of unsteady, incompressible fluid flows on two-dimensional, complex domains is proposed, analyzed, developed and validated. In the IBM, the equations of interest are discretized on a fixed Cartesian grid. As a result, domain boundaries do not always conform to the (rectangular) computational domain boundaries. This gives rise to 'immersed boundaries', i.e., boundaries immersed inside the computational domain. A new IBM is proposed to remedy problems in an older existing IBM that had originally been selected for use in numerical flow control investigations. In particular, the older method suffered from considerably reduced accuracy near the immersed boundary surface where sharp jumps in the solution, i.e., jump discontinuities in the function and/or its derivatives, were smeared out over several grid points. To avoid this behavior, a sharp interface method, originally developed by LeVeque & Li (1994) and Wiegmann & Bube (2000) in the context of elliptic PDEs, is introduced where the numerical scheme takes such discontinuities into consideration in its design. By comparing computed solutions to jump-singular PDEs having known analytical solutions, the new IBM is shown to maintain the formal fourth-order accuracy, in both time and space, of the underlying finite-difference scheme. Further validation of the new IBM code was accomplished through its application to several two-dimensional flows, including flow past a circular cylinder, and T-S waves in a flat plate boundary layer. Comparison of results from the new IBM with results available in the literature found good agreement in all cases.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Aerospace.; Physics, Fluid and Plasma.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Aerospace and Mechanical Engineering
Degree Grantor:
University of Arizona
Advisor:
Fasel, Hermann F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleA high-order immersed boundary method for unsteady incompressible flow calculationsen_US
dc.creatorLinnick, Mark Nicholasen_US
dc.contributor.authorLinnick, Mark Nicholasen_US
dc.date.issued2003en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA high-order immersed boundary method (IBM) for the computation of unsteady, incompressible fluid flows on two-dimensional, complex domains is proposed, analyzed, developed and validated. In the IBM, the equations of interest are discretized on a fixed Cartesian grid. As a result, domain boundaries do not always conform to the (rectangular) computational domain boundaries. This gives rise to 'immersed boundaries', i.e., boundaries immersed inside the computational domain. A new IBM is proposed to remedy problems in an older existing IBM that had originally been selected for use in numerical flow control investigations. In particular, the older method suffered from considerably reduced accuracy near the immersed boundary surface where sharp jumps in the solution, i.e., jump discontinuities in the function and/or its derivatives, were smeared out over several grid points. To avoid this behavior, a sharp interface method, originally developed by LeVeque & Li (1994) and Wiegmann & Bube (2000) in the context of elliptic PDEs, is introduced where the numerical scheme takes such discontinuities into consideration in its design. By comparing computed solutions to jump-singular PDEs having known analytical solutions, the new IBM is shown to maintain the formal fourth-order accuracy, in both time and space, of the underlying finite-difference scheme. Further validation of the new IBM code was accomplished through its application to several two-dimensional flows, including flow past a circular cylinder, and T-S waves in a flat plate boundary layer. Comparison of results from the new IBM with results available in the literature found good agreement in all cases.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Aerospace.en_US
dc.subjectPhysics, Fluid and Plasma.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFasel, Hermann F.en_US
dc.identifier.proquest3119962en_US
dc.identifier.bibrecord.b45636904en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.