Persistent Link:
http://hdl.handle.net/10150/289831
Title:
Intermittency in large scale structures in the universe
Author:
Jamkhedkar, Priya
Issue Date:
2002
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
I study the weak nonlinear regime of structure formation using high resolution and high signal-to-noise ratio (S/N) samples of Quasi Stellar Objects' (QSOs) Lyα transmission spectra. Using a space-scale decomposition, the Discrete Wavelet Transform (DWT), I show that the field traced by Lyα transmission flux is intermittent on scales less than 2000 km/s. The distribution of the local power of fluctuations is spiky with almost no power between the spikes. This spike-gap-spike feature gets more pronounced on smaller scales (128-16 km/s). This feature contradicts the predictions of the correlation hierarchy model on small scales ( < 64 km/s). Intermittency renders lower order statistics, like the power spectrum of fluctuations, ineffective in describing an intermittent field and discriminating between various structure formation models. I show that the structure functions and the intermittent exponent are not only able to quantitatively differentiate between different dark matter models but also qualitatively describe the nature of non-Gaussianity. The structure functions and the intermittent exponent are powerful tools for describing an intermittent field. Intermittency opens a new window in the study of the nonlinear evolution of structure in the universe.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Astronomy and Astrophysics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Fang, Li-Zhi

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleIntermittency in large scale structures in the universeen_US
dc.creatorJamkhedkar, Priyaen_US
dc.contributor.authorJamkhedkar, Priyaen_US
dc.date.issued2002en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractI study the weak nonlinear regime of structure formation using high resolution and high signal-to-noise ratio (S/N) samples of Quasi Stellar Objects' (QSOs) Lyα transmission spectra. Using a space-scale decomposition, the Discrete Wavelet Transform (DWT), I show that the field traced by Lyα transmission flux is intermittent on scales less than 2000 km/s. The distribution of the local power of fluctuations is spiky with almost no power between the spikes. This spike-gap-spike feature gets more pronounced on smaller scales (128-16 km/s). This feature contradicts the predictions of the correlation hierarchy model on small scales ( < 64 km/s). Intermittency renders lower order statistics, like the power spectrum of fluctuations, ineffective in describing an intermittent field and discriminating between various structure formation models. I show that the structure functions and the intermittent exponent are not only able to quantitatively differentiate between different dark matter models but also qualitatively describe the nature of non-Gaussianity. The structure functions and the intermittent exponent are powerful tools for describing an intermittent field. Intermittency opens a new window in the study of the nonlinear evolution of structure in the universe.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFang, Li-Zhien_US
dc.identifier.proquest3060992en_US
dc.identifier.bibrecord.b43042132en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.