Persistent Link:
http://hdl.handle.net/10150/289830
Title:
Multi-modality imaging of small animals
Author:
Kastis, Georgios
Issue Date:
2002
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Over the last few years there has been a great demand for noninvasive, dedicated, small-animal imaging systems for biomedical research applications. In this dissertation we will discuss the development and performance of two gamma-ray systems and a dual modality CT/SPECT system. Initially we introduce FASTSPECT, a stationary, scintillator-based, single-photon emission computed tomography (SPECT) system that was originally built as a brain imager. We discuss its transformation into a small-animal imaging system and validate its performance by presenting high-resolution images of phantoms and animals. Furthermore, we discuss the development of an in vivo imaging protocol for rat myocardial models using FASTSPECT. The infarct size obtained from the images is quantified and compared with the myocardial infarct size measured from histology. Semiconductor detectors can exhibit good spatial and energy resolution, and therefore offer a promising alternative to scintillation technology. We discuss the performance of a semiconductor detector system, previously developed in our group, for planar and tomographic imaging of small animals. The same gamma-ray detector is used in a dual modality system for imaging mice. The system combines an anatomical imaging modality, x-ray CT, with a functional modality, SPECT. We present the development of the CT/SPECT system and illustrate its performance by presenting high-resolution images of phantoms and mice. Finally, we introduce a procedure for evaluating estimation methods without the use of a gold standard.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Health Sciences, Radiology.; Physics, Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Barrett, Harrison H.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleMulti-modality imaging of small animalsen_US
dc.creatorKastis, Georgiosen_US
dc.contributor.authorKastis, Georgiosen_US
dc.date.issued2002en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractOver the last few years there has been a great demand for noninvasive, dedicated, small-animal imaging systems for biomedical research applications. In this dissertation we will discuss the development and performance of two gamma-ray systems and a dual modality CT/SPECT system. Initially we introduce FASTSPECT, a stationary, scintillator-based, single-photon emission computed tomography (SPECT) system that was originally built as a brain imager. We discuss its transformation into a small-animal imaging system and validate its performance by presenting high-resolution images of phantoms and animals. Furthermore, we discuss the development of an in vivo imaging protocol for rat myocardial models using FASTSPECT. The infarct size obtained from the images is quantified and compared with the myocardial infarct size measured from histology. Semiconductor detectors can exhibit good spatial and energy resolution, and therefore offer a promising alternative to scintillation technology. We discuss the performance of a semiconductor detector system, previously developed in our group, for planar and tomographic imaging of small animals. The same gamma-ray detector is used in a dual modality system for imaging mice. The system combines an anatomical imaging modality, x-ray CT, with a functional modality, SPECT. We present the development of the CT/SPECT system and illustrate its performance by presenting high-resolution images of phantoms and mice. Finally, we introduce a procedure for evaluating estimation methods without the use of a gold standard.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHealth Sciences, Radiology.en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBarrett, Harrison H.en_US
dc.identifier.proquest3060990en_US
dc.identifier.bibrecord.b43042107en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.