Persistent Link:
http://hdl.handle.net/10150/289783
Title:
Instability and fingering of DNAPL below the water table
Author:
Tartakovski, Alexandre
Issue Date:
2002
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
We analyze the movement of DNAPL in a three-dimensional randomly heterogeneous porous medium, saturated with water, that is initially pooled above a water table or flows at a constant flux. We consider the front to form a sharp boundary at which the capillary pressure head, assumed equal to the entry pressure head of DNAPL, is prescribed either deterministically or randomly, treat log conductivity as a statistically homogeneous random field with given mean, variance and covariance; cast the corresponding boundary-value problem in the form of an integro-differential equation, in which the parameters and domain of integration are random; expand this equation in a Taylor series about the mean position of the front; and take ensemble mean. To quantify the predictive uncertainty associated with this mean solution, we develop a set of integro-differential equations for the corresponding second ensemble moments. We solve the resulting moment equations analytically and numerically in one and two dimensions to second order in the standard deviation of log conductivity. A comparison of our one-dimensional solutions with the results of Monte Carlo simulations verifies its accuracy. We also show that a probabilistic analysis of wetting front instability due to Chen and Neuman (1996) applies to a DNAPL front.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Hydrology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Hydrology and Water Resources
Degree Grantor:
University of Arizona
Advisor:
Neuman, Slomo P.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleInstability and fingering of DNAPL below the water tableen_US
dc.creatorTartakovski, Alexandreen_US
dc.contributor.authorTartakovski, Alexandreen_US
dc.date.issued2002en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWe analyze the movement of DNAPL in a three-dimensional randomly heterogeneous porous medium, saturated with water, that is initially pooled above a water table or flows at a constant flux. We consider the front to form a sharp boundary at which the capillary pressure head, assumed equal to the entry pressure head of DNAPL, is prescribed either deterministically or randomly, treat log conductivity as a statistically homogeneous random field with given mean, variance and covariance; cast the corresponding boundary-value problem in the form of an integro-differential equation, in which the parameters and domain of integration are random; expand this equation in a Taylor series about the mean position of the front; and take ensemble mean. To quantify the predictive uncertainty associated with this mean solution, we develop a set of integro-differential equations for the corresponding second ensemble moments. We solve the resulting moment equations analytically and numerically in one and two dimensions to second order in the standard deviation of log conductivity. A comparison of our one-dimensional solutions with the results of Monte Carlo simulations verifies its accuracy. We also show that a probabilistic analysis of wetting front instability due to Chen and Neuman (1996) applies to a DNAPL front.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHydrology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorNeuman, Slomo P.en_US
dc.identifier.proquest3050319en_US
dc.identifier.bibrecord.b42724119en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.