Persistent Link:
http://hdl.handle.net/10150/289709
Title:
The dissolution behavior of scorodite in acidic environments
Author:
Pande, Preeti
Issue Date:
2001
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The safe disposal of arsenic-containing waste has been a difficult problem for the mining and metallurgical industry. One of the solutions to the arsenic problem is the precipitation of scorodite, an arsenic-containing mineral. Scorodite is reported to be relatively stable over a wide range of pH, and therefore may be a preferred disposal option. The effect of organic complexing agents on scorodite stability, however, is largely unknown. The present study is a phenomenological investigation into the dissolution kinetics of scorodite in the presence of oxalic acid under varying conditions of pH, oxalic acid concentration and temperature. The effect of scorodite particle size was also investigated. The morphological changes accompanying the dissolution process were examined by SEM and TEM analyses. Dissolution curves were divided into a linear induction period and a post-induction period. Activation energies were determined. Complete dissolution data were fit to the Prout-Tompkins/Austin-Rickett model. Dissolution data are indicative of auto-accelerated processes. The rapid increase in dissolution rate following the induction period is believed to be associated with an increase in the effective surface area. Pitting was observed on the surface of scorodite in the early stages of dissolution. In the later stages of dissolution, these pits were observed to grow and coalesce, in many cases resulting in the formation of dissolution holes.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Environmental.; Engineering, Materials Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Materials Science and Engineering
Degree Grantor:
University of Arizona
Advisor:
Hiskey, James Brent

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleThe dissolution behavior of scorodite in acidic environmentsen_US
dc.creatorPande, Preetien_US
dc.contributor.authorPande, Preetien_US
dc.date.issued2001en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe safe disposal of arsenic-containing waste has been a difficult problem for the mining and metallurgical industry. One of the solutions to the arsenic problem is the precipitation of scorodite, an arsenic-containing mineral. Scorodite is reported to be relatively stable over a wide range of pH, and therefore may be a preferred disposal option. The effect of organic complexing agents on scorodite stability, however, is largely unknown. The present study is a phenomenological investigation into the dissolution kinetics of scorodite in the presence of oxalic acid under varying conditions of pH, oxalic acid concentration and temperature. The effect of scorodite particle size was also investigated. The morphological changes accompanying the dissolution process were examined by SEM and TEM analyses. Dissolution curves were divided into a linear induction period and a post-induction period. Activation energies were determined. Complete dissolution data were fit to the Prout-Tompkins/Austin-Rickett model. Dissolution data are indicative of auto-accelerated processes. The rapid increase in dissolution rate following the induction period is believed to be associated with an increase in the effective surface area. Pitting was observed on the surface of scorodite in the early stages of dissolution. In the later stages of dissolution, these pits were observed to grow and coalesce, in many cases resulting in the formation of dissolution holes.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Environmental.en_US
dc.subjectEngineering, Materials Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMaterials Science and Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHiskey, James Brenten_US
dc.identifier.proquest3026562en_US
dc.identifier.bibrecord.b42177509en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.