Persistent Link:
http://hdl.handle.net/10150/289168
Title:
Optical reference profilometry
Author:
Clark, Stephan Richard
Issue Date:
2000
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The Optical Reference Profilometer is a new coordinate measurement machine (CMM) configuration that utilizes a special optical referencing frame to provide a highly stable and highly accurate surface measurement. This new referencing frame provides several mechanical advantages that make it possible to use lower precision mechanical components while still maintaining a high measurement accuracy. The Optical Reference Profilometer also provides a reduced measurement sensitivity to thermal variations of the system. With the addition a Super-Invar metering rod network, this CMM system is essentially thermally insensitive to temperature changes on the order of 1°C. This special feature makes the Optical Reference Profilometer functional at a high measurement accuracy level in an open lab environment. For the current dissertation work, two profilometer designs were built: a prototype and a second-generation system. A discussion of both systems will be given where the advantages of the optical reference frame design will be shown, This dissertation will end with a discussion of the overall system performance and plans for future work that would increase the overall system accuracy. The optical reference profilometer has proven to be a viable testing device. It provides a high accuracy surface measurement, 100nm peak-to-valley and 15nm rms for surface slopes up to 20 degrees, with simple mechanical structures while maintaining the versatility to measure a variety of surface shapes.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Greivenkamp, John E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleOptical reference profilometryen_US
dc.creatorClark, Stephan Richarden_US
dc.contributor.authorClark, Stephan Richarden_US
dc.date.issued2000en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe Optical Reference Profilometer is a new coordinate measurement machine (CMM) configuration that utilizes a special optical referencing frame to provide a highly stable and highly accurate surface measurement. This new referencing frame provides several mechanical advantages that make it possible to use lower precision mechanical components while still maintaining a high measurement accuracy. The Optical Reference Profilometer also provides a reduced measurement sensitivity to thermal variations of the system. With the addition a Super-Invar metering rod network, this CMM system is essentially thermally insensitive to temperature changes on the order of 1°C. This special feature makes the Optical Reference Profilometer functional at a high measurement accuracy level in an open lab environment. For the current dissertation work, two profilometer designs were built: a prototype and a second-generation system. A discussion of both systems will be given where the advantages of the optical reference frame design will be shown, This dissertation will end with a discussion of the overall system performance and plans for future work that would increase the overall system accuracy. The optical reference profilometer has proven to be a viable testing device. It provides a high accuracy surface measurement, 100nm peak-to-valley and 15nm rms for surface slopes up to 20 degrees, with simple mechanical structures while maintaining the versatility to measure a variety of surface shapes.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGreivenkamp, John E.en_US
dc.identifier.proquest9983869en_US
dc.identifier.bibrecord.b40823519en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.