Persistent Link:
http://hdl.handle.net/10150/289093
Title:
Effect of influx of Eolian materials on soil formation
Author:
Algharaibeh, Mamoun
Issue Date:
2000
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The quantity of quartz and its size distribution was determined in soils formed from quartz free basaltic tephra on Greens Peak, Apache County, Arizona. The soils showed a decrease in quartz content from the east side to the west side of the peak. The percentage of averaged weighed quartz content in the upper soil horizons ranged from (36.1%-13.9%) on the east side and (19.9%-12.3%) on the west side. The content of quartz was higher in the surface soil horizons than in the lower horizons. Large amounts of quartz occurred in the sand and silt fraction, whereas no quartz was detected in the clay fractions. Quartz is concentrated mostly in the coarse silt (22-53 μm) fraction (50%). Quartz particle size distribution in these soils is dominantly in the range of 17-53 μm particle count based, and (17-63 μm) mass based. The abundance of silt and very fine sand quartz, and the paucity of aerosolic quartz 1-10 μm in these fractions is indicative of dust transported short distances from the local sources. It is suggested that the quartz was added as loess sized material of mainly local origin brought into the profiles by eolian transport.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Agriculture, Soil Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Soil, Water and Environmental Sciences
Degree Grantor:
University of Arizona
Advisor:
Hendricks, David M.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleEffect of influx of Eolian materials on soil formationen_US
dc.creatorAlgharaibeh, Mamounen_US
dc.contributor.authorAlgharaibeh, Mamounen_US
dc.date.issued2000en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe quantity of quartz and its size distribution was determined in soils formed from quartz free basaltic tephra on Greens Peak, Apache County, Arizona. The soils showed a decrease in quartz content from the east side to the west side of the peak. The percentage of averaged weighed quartz content in the upper soil horizons ranged from (36.1%-13.9%) on the east side and (19.9%-12.3%) on the west side. The content of quartz was higher in the surface soil horizons than in the lower horizons. Large amounts of quartz occurred in the sand and silt fraction, whereas no quartz was detected in the clay fractions. Quartz is concentrated mostly in the coarse silt (22-53 μm) fraction (50%). Quartz particle size distribution in these soils is dominantly in the range of 17-53 μm particle count based, and (17-63 μm) mass based. The abundance of silt and very fine sand quartz, and the paucity of aerosolic quartz 1-10 μm in these fractions is indicative of dust transported short distances from the local sources. It is suggested that the quartz was added as loess sized material of mainly local origin brought into the profiles by eolian transport.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectAgriculture, Soil Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSoil, Water and Environmental Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHendricks, David M.en_US
dc.identifier.proquest9965857en_US
dc.identifier.bibrecord.b40376837en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.