An analytical and experimental investigation of sandwich composites subjected to low-velocity impact

Persistent Link:
http://hdl.handle.net/10150/289090
Title:
An analytical and experimental investigation of sandwich composites subjected to low-velocity impact
Author:
Anderson, Todd Alan, 1971-
Issue Date:
1999
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This study involves an experimental and analytical investigation of low-velocity impact phenomenon in sandwich composite structures. The analytical solution of a three-dimensional finite-geometry multi-layer specially orthotropic panel subjected to static and transient transverse loading cases is presented. The governing equations of the static and dynamic formulations are derived from Reissner's functional and solved by enforcing the continuity of traction and displacement components between adjacent layers. For the dynamic loading case, the governing equations are solved by applying Fourier or Laplace transformation in time. Additionally, the static solution is extended to solve the contact problem between the sandwich laminate and a rigid sphere. An iterative method is employed to determine the sphere's unknown contact area and pressure distribution. A failure criterion is then applied to the sandwich laminate's stress and strain field to predict impact damage. The analytical accuracy of the present study is verified through comparisons with finite element models, other analyses, and through experimentation. Low-velocity impact tests were conducted to characterize the type and extent of the damage observed in a variety of sandwich configurations with graphite/epoxy face sheets and foam or honeycomb cores. Correlation of the residual indentation and cross-sectional views of the impacted specimens provides a criterion for the extent of damage. Quasi-static indentation tests are also performed and show excellent agreement when compared with the analytical predictions. Finally, piezoelectric polyvinylidene fluoride (PVF2) film sensors are found to be effective in detecting low-velocity impact.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Aerospace.; Engineering, Mechanical.; Engineering, Materials Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Aerospace and Mechanical Engineering
Degree Grantor:
University of Arizona
Advisor:
Madenci, Erdogan

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleAn analytical and experimental investigation of sandwich composites subjected to low-velocity impacten_US
dc.creatorAnderson, Todd Alan, 1971-en_US
dc.contributor.authorAnderson, Todd Alan, 1971-en_US
dc.date.issued1999en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis study involves an experimental and analytical investigation of low-velocity impact phenomenon in sandwich composite structures. The analytical solution of a three-dimensional finite-geometry multi-layer specially orthotropic panel subjected to static and transient transverse loading cases is presented. The governing equations of the static and dynamic formulations are derived from Reissner's functional and solved by enforcing the continuity of traction and displacement components between adjacent layers. For the dynamic loading case, the governing equations are solved by applying Fourier or Laplace transformation in time. Additionally, the static solution is extended to solve the contact problem between the sandwich laminate and a rigid sphere. An iterative method is employed to determine the sphere's unknown contact area and pressure distribution. A failure criterion is then applied to the sandwich laminate's stress and strain field to predict impact damage. The analytical accuracy of the present study is verified through comparisons with finite element models, other analyses, and through experimentation. Low-velocity impact tests were conducted to characterize the type and extent of the damage observed in a variety of sandwich configurations with graphite/epoxy face sheets and foam or honeycomb cores. Correlation of the residual indentation and cross-sectional views of the impacted specimens provides a criterion for the extent of damage. Quasi-static indentation tests are also performed and show excellent agreement when compared with the analytical predictions. Finally, piezoelectric polyvinylidene fluoride (PVF2) film sensors are found to be effective in detecting low-velocity impact.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Aerospace.en_US
dc.subjectEngineering, Mechanical.en_US
dc.subjectEngineering, Materials Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMadenci, Erdoganen_US
dc.identifier.proquest9960294en_US
dc.identifier.bibrecord.b40273945en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.