Persistent Link:
http://hdl.handle.net/10150/289018
Title:
Splitting in finite metacyclic groups
Author:
Jackson, Jack Lee
Issue Date:
1999
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
It is well known that all finite metacyclic groups have a presentation of the form G = ‹a,x,aᵐ = 1,xˢaᵗ = 1,aˣ = aʳ›. The primary question that occupies this dissertation is determining under what conditions a group with such a presentation splits over the given normal subgroup ‹a›. Necessary and sufficient conditions are given for splitting, and techniques for finding complements are given in the cases where G splits over ‹a›. Several representative examples are examined in detail, and the splitting theorem is applied to give alternate proofs of theorems of Dedekind and Blackburn.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Mathematics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Mathematics
Degree Grantor:
University of Arizona
Advisor:
Grove, Larry C.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleSplitting in finite metacyclic groupsen_US
dc.creatorJackson, Jack Leeen_US
dc.contributor.authorJackson, Jack Leeen_US
dc.date.issued1999en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIt is well known that all finite metacyclic groups have a presentation of the form G = ‹a,x,aᵐ = 1,xˢaᵗ = 1,aˣ = aʳ›. The primary question that occupies this dissertation is determining under what conditions a group with such a presentation splits over the given normal subgroup ‹a›. Necessary and sufficient conditions are given for splitting, and techniques for finding complements are given in the cases where G splits over ‹a›. Several representative examples are examined in detail, and the splitting theorem is applied to give alternate proofs of theorems of Dedekind and Blackburn.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectMathematics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGrove, Larry C.en_US
dc.identifier.proquest9946817en_US
dc.identifier.bibrecord.b39915323en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.