Persistent Link:
http://hdl.handle.net/10150/288953
Title:
Gravitational aspects of tachyon domain walls
Author:
Green, Kris H.
Issue Date:
1999
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This thesis derives and explores two solutions to the field equations of general relativity. These solutions are special cases of solutions already present in the literature. However, the present derivation is based on physical arguments which provides a basis for discussing the solutions as cosmological objects, rather than simply as a class of solutions with certain symmetries. This derivation naturally gives rise to the idea that the space-times indicated are generated by the passage of walls composed of gases of transcendant tachyons. After deriving the solutions, we explore the geodesics that these walls generate. In general, they tend to focus the paths of particles moving through the walls. It is also found that the walls generate blue-shifts in observed photons emitted from sources that pass through the walls. As applications of these solutions, numerical simulations demonstrate that a toy galaxy passing through the second type of tachyon wall develops spiral structures which persist for several rotations of the galaxy, dissolve, and then reform throughout the lifetime of the galaxy. A number of open problems associated with these walls are discussed.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Astronomy and Astrophysics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Applied Mathematics
Degree Grantor:
University of Arizona
Advisor:
Cocke, William J.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleGravitational aspects of tachyon domain wallsen_US
dc.creatorGreen, Kris H.en_US
dc.contributor.authorGreen, Kris H.en_US
dc.date.issued1999en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis thesis derives and explores two solutions to the field equations of general relativity. These solutions are special cases of solutions already present in the literature. However, the present derivation is based on physical arguments which provides a basis for discussing the solutions as cosmological objects, rather than simply as a class of solutions with certain symmetries. This derivation naturally gives rise to the idea that the space-times indicated are generated by the passage of walls composed of gases of transcendant tachyons. After deriving the solutions, we explore the geodesics that these walls generate. In general, they tend to focus the paths of particles moving through the walls. It is also found that the walls generate blue-shifts in observed photons emitted from sources that pass through the walls. As applications of these solutions, numerical simulations demonstrate that a toy galaxy passing through the second type of tachyon wall develops spiral structures which persist for several rotations of the galaxy, dissolve, and then reform throughout the lifetime of the galaxy. A number of open problems associated with these walls are discussed.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCocke, William J.en_US
dc.identifier.proquest9927445en_US
dc.identifier.bibrecord.b39559294en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.